首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation.  相似文献   

9.
Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1   总被引:10,自引:0,他引:10  
The ternary complex factors (TCFs) Net, Elk-1 and Sap-1 regulate immediate early genes through serum response elements (SREs) in vitro, but, surprisingly, their in vivo roles are unknown. Net is a repressor that is expressed in sites of vasculogenesis during mouse development. We have made gene-targeted mice that express a hypomorphic mutant of Net, Net delta, which lacks the Ets DNA-binding domain. Strikingly, homozygous mutant mice develop a vascular defect and up-regulate an immediate early gene implicated in vascular disease, egr-1. They die after birth due to respiratory failure, resulting from the accumulation of chyle in the thoracic cage (chylothorax). The mice have dilated lymphatic vessels (lymphangiectasis) as early as E16.5. Interestingly, they express more egr-1 in heart and pulmonary arteries at E18.5. Net negatively regulates the egr-1 promoter and binds specifically to SRE-5. Egr-1 has been associated with pathologies involving vascular stenosis (e.g. atherosclerosis), and here egr-1 dysfunction could possibly be associated with obstructions that ultimately affect the lymphatics. These results show that Net is involved in vascular biology and egr-1 regulation in vivo.  相似文献   

10.
11.
S Dalton  R Treisman 《Cell》1992,68(3):597-612
We used a yeast genetic screen to isolate cDNAs that encode a protein, SRF accessory protein-1 (SAP-1), that is recruited to the c-fos serum response element (SRE) as part of a ternary complex that includes serum response factor (SRF). SAP-1 requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5' side of SRF, but does not bind DNA autonomously. Ternary complex formation by SAP-1 requires only the DNA-binding domain of SRF, which can be replaced by that of the related yeast protein MCM1. We isolated cDNAs encoding two forms of SAP-1 protein, SAP-1a and SAP-1b, which differ at their C termini. Both SAP-1 proteins contain three regions of striking homology with the elk-1 protein, including an N-terminal ets domain. Ternary complex formation by SAP-1 requires both the ets domain and a second conserved region 50 amino acids to its C-terminal side. SAP-1 has similar DNA binding properties to the previously characterized HeLa cell protein p62/TCF.  相似文献   

12.
Ternary complex factors (TCFs), a subgroup of the ETS protein family, were first described in the context of c-fos gene regulation. Subsequently, their early identification as nuclear targets for mitogen-activated protein kinases served to exemplify the fundamental links in eukaryotic cells between growth factor-mediated signalling pathways and gene control. This article provides an overview of recent work on ternary complex factors, addressing their expression and molecular structure, as well as how selective interactions with members of other protein families serve to up-1 regulate or restrict their activity. Although only one genetic study on ternary complex factors has been published to date, unravelling of the underlying molecular events provides a basis for tentative predictions about their biological roles in mammalian organisms.  相似文献   

13.
14.
15.
16.
17.
18.
The protein Id: a negative regulator of helix-loop-helix DNA binding proteins   总被引:261,自引:0,他引:261  
We have isolated a cDNA clone encoding a novel helix-loop-helix (HLH) protein, Id. Id is missing the basic region adjacent to the HLH domain that is essential for specific DNA binding in another HLH protein, MyoD. An in vitro translation product of Id can associate specifically with at least three HLH proteins (MyoD, E12, and E47) and attenuate their ability to bind DNA as homodimeric or heterodimeric complexes. Id is expressed at varying levels in all cell lines tested. In three cell lines that can be induced to undergo terminal differentiation, Id RNA levels decrease upon induction. Transfection experiments indicate that over-expression of Id inhibits the trans-activation of the muscle creatine kinase enhancer by MyoD. Based on these findings, we propose that HLH proteins lacking a basic region may negatively regulate other HLH proteins through the formation of nonfunctional heterodimeric complexes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号