首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Single-chain variable fragment of the murine monoclonal antibody NC10 specific to influenza virus N9 neuraminidase, joined directly in the V(L) to V(H) orientation (scFv-0), forms an equilibrium mixture of tetramer and trimer with the tetramer as the preferred multimeric species. In contrast, the V(H)-V(L) isomer was previously shown to exist exclusively as a trimer. Computer-generated trimeric and tetrameric scFv models, based on the refined crystal structure for NC10 Fv domain, were constructed and used to evaluate factors influencing the transition between V(L)-V(H) trimer and tetramer. These model structures indicated that steric restrictions between loops spanning amino acid residues L55-L59 and L13-L17 from the two adjacent V(L) domains within the V(L)-V(H) trimer were responsible for four scFv-0 molecules assembling to form a tetramer. In particular, leucine at position L15 and glutamate at position L57 appeared to interfere significantly with each other. To minimize this steric interference, the site-directed mutagenesis technique was used to construct several NC10 scFv-0 clones with mutations at these positions. Size-exclusion chromatographic analyses revealed that several of these mutations resulted in the production of NC10 scFv-0 proteins with significantly altered tetramer-trimer equilibrium ratios. In particular, introduction of a polar residue, such as asparagine or threonine, at position L15 generated a highly stable NC10 scFv-0 trimer.  相似文献   

2.
Single-chain variable fragments (scFvs) of anti-Lewis(y) hu3S193 humanized antibody were constructed by joining the V(H) and V(L) domains with either +2 residues, +1 residue, or by directly linking the domains. In addition two constructs were synthesized in which one or two C-terminal residues of the V(H) domain were removed (-1 residue, -2 residue) and then joined directly to the V(L) domain. An scFv construct in the reverse orientation with the V(L) joined directly to the V(H) domain was also synthesized. Upon transformation into Escherichia coli all scFv constructs expressed active protein. Binding activity, multimeric status, and multivalent properties were assessed by flow cytometry, size exclusion chromatography, and biosensor analysis. The results for hu3S193 scFvs are consistent with the paradigm that scFvs with a linker of +3 residues or more associate to form a non-covalent dimer, and those with a shorter linker or directly linked associate predominantly to form a non-covalent trimer and tetramer that are in equilibrium. While the association of V domains to form either a dimer or trimer/tetramer is governed by the length of the linker, the stability of the trimer/tetramer in the equilibrium mixture is dependent on the affinity of the interaction of the individual V domains to associate to form the larger Fv module.  相似文献   

3.
Single-chain Fv antibody fragments (scFvs) incorporate a polypeptide linker to tether the VH and VL domains together. An scFv molecule with a linker 5-12 residues long cannot fold into a functional Fv domain and instead associates with a second scFv molecule to form a bivalent dimer (diabody). Direct ligation of VH and VL domains further restricts association and forces three scFv molecules to associate into a trivalent trimer (triabody). We have defined the effect of linker length on scFv association by constructing a series of scFvs from anti-neuraminidase antibody NC10 in which the linker varied from one to four glycine residues. NC10 scFv molecules containing linkers of three and four residues showed a strong preference for dimer formation (diabodies), whereas a linker length of one or two glycine residues prevented the formation of diabodies and directed scFv association into trimers (triabodies). The data suggest a relatively strict transition from dimer (diabody) to trimer (triabody) upon reduction of the linker length from three to two glycine residues. Modelling studies are consistent with three residues as the minimum linker length compatible with diabody formation. Electron microscope images of complexes formed between the NC10 scFv multimers and an anti-idiotype Fab' showed that the dimer was bivalent for antigen binding and the trimer was trivalent.  相似文献   

4.
Arndt MA  Krauss J  Rybak SM 《FEBS letters》2004,578(3):257-261
By varying linker length and domain orientation three multivalent derivatives of a monovalent anti-CD22 single-chain fragment variable (scFv) antibody were generated. Shortening the linker of the V(H)-V(L) oriented scFv to 5 or 0 residues resulted in the formation of diabodies or a mixture of tetramers and trimers, respectively. Unexpectedly, a V(L)-0-V(H) scFv assembled to homogenous dimers, remained substantially more stable than the V(H)-5-V(L) diabody when incubated in human serum at 37 degrees C, and retained its dimeric state when concentrated up to 4 mg/ml. These properties suggest the V(L)-0-V(H) scFv could become an attractive vehicle for the selective delivery of multiple effector molecules to CD22(+) tumor cells.  相似文献   

5.
Diabodies (scFv dimers) are small, bivalent antibody mimetics of approximately 55kDa in size that possess rapid in vivo targeting pharmacokinetics compared to the intact parent antibody, and may prove highly suitable for imaging and therapeutic applications. Here, we describe T84.66Di, the first diabody crystal structure in which the scFvs comprise V domains linked in the V(L)-to-V(H) orientation. The structure was determined by X-ray diffraction analysis to 2.6 A resolution. The T84.66Di scFv was constructed from the anti-carcinoembryonic antigen (anti-CEA) antibody T84.66 variable domains connected by an eight residue peptide linker to provide flexibility between Fv modules and promote dimer formation with bivalent affinity to the cell-surface target, CEA. Therefore, it was surprising to observe a close association of some Fv module complementarity-determining regions in the T84.66 diabody crystal, especially compared to other diabody structures all of which are linked in the opposite V(H)-to-V(L) orientation. The differences between the arrangement of Fv modules in the T84.66Di V(L)-to-V(H) linked diabody structure compared to the crystal structure of L5MK16 and other proposed V(H)-to-V(L) linked diabodies has been investigated and their potential for flexibility discussed. The comparison between V(H)-to-V(L) and V(L)-to-V(H) linked diabodies revealed in this study represents a limited repertoire of possible diabody Fv orientations, but one that reveals the potential flexibility of these molecules. This analysis therefore provides some signposts that may impact on future molecular designs for these therapeutic molecules with respect to diabody flexibility and avidity.  相似文献   

6.
Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V(H)) and variable light (V(L)) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V(H)-V(L) M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V(L) domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V(L) forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V(L) homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V(H)-V(L) M8 and M8V(L), led us to rationally design tandem, covalent homodimers of M8V(L) domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.  相似文献   

7.
Bispecific single-chain diabodies (scDb) consist of the variable heavy and light chain domains of two antibodies connected by three linkers. The structure of an scDb in the V(H)-V(L) orientation is V(H)A-linkerA-V(L)B-linkerM-V(H)B-linkerB-V(L)A, with linkers A and B routinely chosen to be 5-6 residues and linker M 15-20 residues. Here, we applied display of scDb on filamentous phage to analyse the composition of optimal linker sequences. The three linkers were randomized in length and sequence using degenerated triplets coding for only six hydrophilic or aliphatic amino acids (Thr, Ser, Asp, Asn, Gly, Ala). Antigen-binding clones were then isolated by one to two rounds of selection on the two different antigens recognized by the bispecific scDb. Using an scDb directed against carcinoembryonic antigen (CEA) and beta-galactosidase (Gal), we found that monomeric scDb had a preferred length of 15 or more amino acid residues for the middle linker M and of 3-6 residues for the linkers A and B. No obvious bias towards a preferred linker sequence was observed. Reduction of the middle linker below 13 residues led to the formation of dimeric scDb, which most likely results from interchain pairing between all the V(H) and V(L) domains. Dimeric scDb were also formed by fragments possessing a long linker M and linkers A and B of 0 or 1 residue. We assume that these dimeric scDb are formed by intrachain pairing of the central variable domains and interchain pairing of the flanking variable domains. Thus, the latter molecules represent a novel format of bispecific and tetravalent molecules. The described strategy allows for the isolation of both optimized and minimal linker sequences for the assembly of monomeric or dimeric single-chain diabodies.  相似文献   

8.
Single-chain Fv fragments (scFvs) against a corticosteroid, 11-deoxycortisol (11-DC), have been generated as a template antibody fragment from which a comprehensive mutated antibody library containing various anti-steroid antibodies could be constructed. The cDNAs encoding variable heavy (V(H)) and light (V(L)) domains of a mouse anti-11-DC antibody (CET-M8), were amplified by RT-PCR, combined via a common linker to construct the sequence of 5'-V(H)-(Gly(4)Ser)(3)-V(L)-3', and cloned into a phagemid vector, pEXmide 5. The phage clones exhibiting binding activity to 11-DC were isolated after single panning against a hapten-immobilizing immunotube. The scFv gene in one of these clones was reamplified to introduce the ochre codons, and then expressed in the bacterial periplasm as the soluble antibody fragment. Two different scFvs (#6 and #12) were cloned, whose binding characteristics were examined by a radioimmunoassay using a tritium-labeled 11-DC. Both of them showed high affinity (K(a)=1.3x10(10)M(-1)) and practical specificity (cross-reactivity: cortisol, <0.2%; cortisone, <0.3%) to 11-DC, and furthermore, strong reactivity with an anti-idiotype antibody which recognizes the paratope of CET-M8. These results suggest that the present scFvs retain the three-dimensional structure of the paratope of the original monoclonal antibody.  相似文献   

9.
Domoic acid is a potent neuroexcitatory toxin that causes amnesic shellfish poisoning in humans through ingestion of contaminated shellfish. The variable regions of the heavy chain (V(H)) and light chain (V(L)) of an antibody specific for domoic acid were cloned from a mouse hybridoma cell line and used to construct single-chain antibody fragments (scFvs) in a variety of formats. V(H)-linker-V(L) scFvs were expressed better in Escherichia coli than the V(L)-linker-V(H) format, while use of the commonly used (Gly4Ser)3 inter-domain linker resulted in higher yields than a longer (Gly4Ser)6 linker variant. Higher soluble protein yields were achieved in E. coli TOP 10 than in E. coli XL1-Blue cells and co-production of the E. coli disulfide bond isomerase enzyme DsbC allowed higher cell densities to be attained during scFv production, leading to increased yields of recombinant protein. The purified scFv exhibited binding similar to the parent monoclonal antibody and is being used to develop an immunosensor to detect domoic acid in contaminated shellfish samples.  相似文献   

10.
Single chain variable fragments (scFv) of the murine monoclonal antibody HD37 specific to human B-cell antigen CD19 were constructed by joining the VH and VL domains with linkers of 18, 10, 1 and 0 residues. ScFv-18 formed monomers, dimers and small amounts of tetramers; scFv-10 formed dimers and small amounts of tetramers; scFv-1 formed exclusively tetramers; scFv-0 formed exclusively trimers. The affinities of the scFv-10 (diabody) and scFv-1 (tetrabody) were approximately 1.5- and 2.5-fold higher, respectively, than that of the scFv-0 (triabody). The tetrabody displayed a significantly prolonged association with cell-bound antigen (t1/2 cell surface retention at 37 degrees C of 26.6 min) compared to both the diabody (13.3 min) and triabody (6.7 min). This increase in avidity of the tetrabody combined with its larger size could prove to be particularly advantageous for imaging and the immunotherapy of B-cell malignancies.  相似文献   

11.
A non-camelized human V(H) domain has been crystallized through limited in vitro proteolysis of scFvM12 antibody fragment. The protease addition results in the complete degradation of the M12-V(L) domain, linker, and purification tags. The structure solved up to 1.5A resolution having good stereochemistry with a R(cryst) factor of 15.8% and R(free) factor of 19.7%. Dihedral angle values comparison of the first and the second complementarity-determining region (CDR) of M12-V(H) domain with an average values show a significant deviation; therefore, M12-V(H) domain structure indicates either the existence of a new canonical subclass or a link among the subclasses of canonical main-chain conformation in V(H)3 family. The presence of uncommon hydrogen bond between Ser-H50 and Tyr-H97 has pulling effect on CDR-H3 loop. The interface area buried by CDR-H3 loop indicates the partial coverage of the hydrophobic V(L)-V(H) interface. The isolated M12-V(H) domain was found soluble up to 0.35 mM. This result would be helpful in structure based designing of an isolated human single domain antibody fragments for biotechnological and pharmaceutical applications such as cancer.  相似文献   

12.
Kobayashi N  Kato Y  Oyama H  Taga S  Niwa T  Sun P  Ohtoyo M  Goto J 《Steroids》2008,73(14):1485-1499
A single-chain Fv fragment (scFv) against estradiol-17beta (E(2)) was generated to begin the construction of a library of various mutated anti-steroid antibodies with an improved affinity and/or specificity. A hybridoma clone secreting a specific anti-E(2) antibody (Ab#E4-4) was established by the cell fusion using splenocytes from a mouse immunized with an immunogenic E(2)-carrier conjugate. DNA fragments encoding the variable heavy and light domains (V(H) and V(L)) of the Ab#E4-4 were cloned and combined to give the scFv gene fragment encoding the sequence 5'-V(H)-(GGGGS)(3)-V(L)-3'. Compared to the Ab#E4-4 Fab fragment, soluble scFv (scFv#E4-4) protein showed a similar affinity to E(2) (K(a)=8.6x10(7)M(-1)) and a similar cross-reaction profile. To further study the fundamentals for creating a comprehensive library of mutated scFvs, the scFvV(H) and V(L) genes were amplified using error-prone PCR conditions and the frequency and pattern of incorporated mutations were investigated. For this, regular Taq polymerase was used in the presence of unequal concentrations of dNTPs. At 1.0mM MnCl(2), the error frequency reached to 8.5% and 11% for the V(H) and V(L) respectively, although a significant transition/transversion bias was observed. ScFv#E4-4 and the mutated polyclonal scFvs were then displayed on filamentous phage under various packaging conditions. Cultivation of the transformed bacteria was more suitable at 25 degrees C than at higher temperatures for the packaging of scFv-bearing phagemid particles. Based on these experimental conditions, an scFv-displaying phage library, each scFv member in which has mutated complementarity-determining region (CDR) H2, H3, L1, and L3, was constructed. A soluble scFv clone (scFv#m1-e7) with a mutated amino acid (I-->V) in CDR L1, isolated from this library, showed threefold higher affinity (K(a)=2.6 x 10(8)M(-1)) than that of scFv#4-4.  相似文献   

13.
While many antibodies with strong antigen-binding affinity have stable variable regions with a strong antibody heavy chain variable region fragment (V(H))/antibody light chain variable region fragment (V(L)) interaction, the anti-lysozyme IgG HyHEL-10 has a fairly strong affinity, yet a very weak V(H)/V(L) interaction strength, in the absence of antigen. To investigate the possible relationship between antigen-binding affinity and V(H)/V(L) interaction strength, a novel phage display system that can switch two display modes was employed. We focused on the two framework region 2 regions of the HyHEL-10 V(H) and V(L), facing each other at the domain interface, and a combinatorial library was made in which each framework region 2 residue was mixed with that of D1.3, which has a far stronger V(H)/V(L) interaction. The phagemid library, encoding V(H) gene 7 and V(L) amber codon gene 9, was used to transform TG-1 (sup+), and the phages displaying functional variable regions were selected. The selected phages were then used to infect a nonsuppressing strain, and the culture supernatant containing V(H)-displaying phages and soluble V(L) fragment was used to evaluate the V(H)/V(L) interaction strength. The results clearly showed the existence of a key framework region 2 residue (H39) that strongly affects V(H)/V(L) interaction strength, and a marked positive correlation between the antigen-binding affinity and the V(H)/V(L) interaction, especially in the presence of a set of particular V(L) residues. The effect of the H39 mutation on the wild-type variable region was also confirmed by a SPR biosensor as a several-fold increase in antigen-binding affinity owing to an increased association rate, while a slight decrease was observed for the single-chain variable region.  相似文献   

14.
Previous studies have indicated differences in the specificity-determining residues (SDRs) of antibodies that recognize haptens, peptides, or proteins. Here, we designed a V(H) repertoire based on the human scaffold 3-23/J(H)4 and diversification of high and medium-usage SDRs of anti-protein and anti-peptide antibodies. The repertoire was synthesized by overlapping polymerase chain reaction (PCR) and combined with the V(L) chain of the anti-hen egg-white lysozyme (HEL) antibody D1.3. The resulting chimeric single-chain Fv fragments (scFvs) phage-displayed library was panned in HEL-coated immunotubes. After two rounds of selection under non-stringent conditions, that is, trypsinization after 2 h of incubation at room temperature, 63 of 167 clones analyzed (38%) were found to express scFvs specific to HEL. Twenty clones were characterized by DNA sequencing resulting in 10 unique scFvs. Interestingly, the panel of unique scFvs was highly diverse, with V(H) sequences differing in 16 of the 17 positions variegated in the repertoire. Thus, diverse chemico-physical and structural solutions were selected from the library, even when the V(H) repertoire was constrained by the V(L) chain of D1.3 to yield binders against a definite region of HEL surface. The more often selected scFvs, namely H6-1 and B7-1, which differed in eight SDRs, showed levels of expression in E. coli TG1 strain, 6 and 10 times higher than the parental D1.3 Fv fragment, respectively. Dissociation constants (K(Ds)) measured in the BIAcore were 11 and 6.6 nM for H6-1 and B7-1, respectively. These values compared well to the K(D) of 4.7 nM measured for D1.3, indicating that the V(H) repertoire here designed is a valuable source of diverse, well-expressed and high affinity V(H) domains.  相似文献   

15.
A series of single-chain anti-CD20 antibodies was produced by fusing single-chain Fv (scFv) with human IgG1 hinge and Fc regions, designated scFv-Fc. The initial scFv-Fc construct was assembled using an 18 amino acid (aa) linker between the antibody light- and heavy-chain variable regions, with the Cys residue in the upper hinge region (Kabat 233) mutagenized to Ser. Anti-CD20 scFv-Fc retained specific binding to CD20-positive cells and was active in mediating complement-dependent cytolysis. Size-exclusion HPLC analysis revealed that the purified scFv-Fc included multimeric as well as monomeric components. Variant scFv-Fcs were constructed incorporating four different hinges between the scFv and Fc regions, or three different linkers in the scFv domain. All formed multimers, with the highest level of multimerization found in the scFv-Fc with the shortest linker (8 aa). Elimination of an unusual salt bridge between residues L38 and H89 in the V(L)-V(H) domain interface failed to reduce the formation of higher order forms. Structural analysis of the scFv-Fc constructed with 18 or 8 aa linkers by pepsin or papain cleavage suggested the proteins contained a form in which scFv units had cross-paired to form a 'diabody'. Thus, domain exchange or cross-pairing appears to be the basis of the observed multimerization.  相似文献   

16.
Although the cooperativity of the V(H) and V(L) domains of an antibody in antigen binding has been extensively studied, the interaction between the V(H) and V(L) domains had not received sufficient attention. To systematically investigate the relationship between the amino acid sequence and V(H)/V(L) interaction strength, we here used a set of anti-bovine serum albumin antibodies having a single human framework for V(H) (V3-23/DP-47 and JH4b) and Vk (O12/O2/DPK9 and Jk1), but with different V(H)/V(L) interaction strengths. By phage display of a V(H) mini-library and analysis of the interaction of amino acids with immobilized V(L) fragments, the residue at H95 (Kabat numbering) at the beginning of seven CDR H3 residues was found to play a key role in determining the V(H)/V(L) interaction. On saturation mutagenesis of H95, Gly showed the strongest interaction, while Asp, Asn, and Glu showed lesser interaction in that order. The generality of the rule was confirmed by the test with urine-derived human L chain instead of a particular V(L). The results demonstrate that H95 plays a central role in deciding the V(H)/V(L) interaction of human Fvs that have most commonly found frameworks.  相似文献   

17.
Jin H  Sepúlveda J  Burrone OR 《FEBS letters》2003,554(3):323-329
The antigen-binding surface of antibodies is formed by the heterodimerisation of the two variable domains of the light (V(L)) and heavy (V(H)) chains. We have previously described the spontaneous formation of V(H) dimers (VHD) in both bacteria and mammalian cells. The self-association of a single domain produces a homo-VHD, in which the two identical V(H) domains generate a unique symmetric surface for antigen binding that is never found in the normal V(L)/V(H) antibody binding site. We developed a phagemid vector for the construction of phage display libraries in which a cysteine residue, introduced at the C-terminus of the only V(H) cloned, allowed display of homo-VHDs. Panning of the library on different proteins yielded antigen specific binders against lysozyme, glutathione S-transferase and streptavidin. A lysozyme specific homo-VHD was further characterised with an apparent affinity determined to be 216+/-6.6 nM. Importantly, the results showed that its binding activity was fully dependent on the dimerisation of both identical V(H) domains.  相似文献   

18.
The antigen binding site of antibodies usually comprises associated heavy (V(H)) and light (V(L)) chain variable domains, but in camels and llamas, the binding site frequently comprises the heavy chain variable domain only (referred to as V(HH)). In contrast to reported human V(H) domains, V(HH) domains are well expressed from bacteria and yeast, are readily purified in soluble form and refold reversibly after heat-denaturation. These desirable properties have been attributed to highly conserved substitutions of the hydrophobic residues of V(H) domains, which normally interact with complementary V(L) domains. Here, we describe the discovery and characterisation of an isolated human V(H) domain (HEL4) with properties similar to those of V(HH) domains. HEL4 is highly soluble at concentrations of > or =3 mM, essentially monomeric and resistant to aggregation upon thermodenaturation at concentrations as high as 56 microM. However, in contrast to V(HH) domains, the hydrophobic framework residues of the V(H):V(L) interface are maintained and the only sequence changes from the corresponding human germ-line segment (V3-23/DP-47) are located in the loops comprising the complementarity determining regions (CDRs). The crystallographic structure of HEL4 reveals an unusual feature; the side-chain of a framework residue (Trp47) is flipped into a cavity formed by Gly35 of CDR1, thereby increasing the hydrophilicity of the V(H):V(L) interface. To evaluate the specific contribution of Gly35 to domain properties, Gly35 was introduced into a V(H) domain with poor solution properties. This greatly enhanced the recovery of the mutant from a gel filtration matrix, but had little effect on its ability to refold reversibly after heat denaturation. Our results confirm the importance of a hydrophilic V(H):V(L) interface for purification of isolated V(H) domains, and constitute a step towards the design of isolated human V(H) domains with practical properties for immunotherapy.  相似文献   

19.
The antigen-binding site of the camel heavy-chain antibodies devoid of light chain consists of a single variable domain (V(H)H) that obviously lacks the V(H)-V(L) combinatorial diversity. To evaluate the extent of the V(H)H antigen-binding repertoire, a germline database was constructed from PCR-amplified V(H)H/V(H) segments of a single specimen of Camelus dromedarius. A total of 33 V(H)H and 39 V()H unique sequences were identified, encoded by 42 and 50 different genes, respectively. Sequence comparison indicates that the V(H)Hs evolved within the V(H) subgroup III. Nevertheless, the V(H)H germline segments are highly diverse, leading to a broad structural repertoire of the antigen-binding loops. Seven V(H)H subfamilies were recognized, of which five were confirmed to be expressed in vivo. Comparison of germline and cDNA sequences demonstrates that the rearranged V(H)Hs are extensively diversified by somatic mutation processes, leading to an additional hypervariable region and a high incidence of nucleotide insertions or deletions. These diversification processes are driven by hypermutation and recombination hotspots embedded in the V(H)H germline genes at the regions affecting the structure of the antigen-binding loops.  相似文献   

20.
Mutations in distal S6 were shown to significantly alter the stability of the open state of Ca(V)2.3 (Raybaud, A., Baspinar, E. E., Dionne, F., Dodier, Y., Sauvé, R., and Parent, L. (2007) J. Biol. Chem. 282, 27944-27952). By analogy with K(V) channels, we tested the hypothesis that channel activation involves electromechanical coupling between S6 and the S4S5 linker in Ca(V)2.3. Among the 11 positions tested in the S4S5 linker of domain II, mutations of the leucine residue at position 596 were found to destabilize significantly the closed state with a -50 mV shift in the activation potential and a -20 mV shift in its charge-voltage relationship as compared with Ca(V)2.3 wt. A double mutant cycle analysis was performed by introducing pairs of glycine residues between S4S5 and S6 of Domain II. Strong coupling energies (ΔΔG(interact) > 2 kcal mol(-1)) were measured for the activation gating of 12 of 39 pairs of mutants. Leu-596 (IIS4S5) was strongly coupled with distal residues in IIS6 from Leu-699 to Asp-704. In particular, the double mutant L596G/I701G showed strong cooperativity with a ΔΔG(interact) ≈6 kcal mol(-1) suggesting that both positions contribute to the activation gating of the channel. Altogether, our results highlight the role of a leucine residue in S4S5 and provide the first series of evidence that the IIS4S5 and IIS6 regions are energetically coupled during the activation of a voltage-gated Ca(V) channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号