首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

2.
Abstract. The study of vegetation dynamics in tallgrass prairie in response to fire has focused on dormant season fire in late successional prairies. Our objective was to determine if late season fire of varying frequency results in divergent successional patterns in an early successional tallgrass prairie disturbed by grazing and cultivation. Specifically, we evaluated the influence of late‐summer fires of varying frequency on community composition and species richness. We collected vegetation and environmental data on two sites burned in the late growing‐season at varying frequencies. These communities differed in composition depending primarily on edaphic factors, time since the last burn, and year‐to‐year variation. We interpret the time effect as related to changes in species composition accompanying plant succession that followed disturbance either from cropping and heavy grazing on the loamy site or heavy grazing on the shallow site. Other unidentified factors also have a role in vegetation dynamics on this prairie. Community composition and species richness were not consistently responsive to frequency of growing‐season fires.  相似文献   

3.
The influence of standing dead biomass on available solar radiation, leaf temperature (Tleaf) and leaf water potential (ѱleaf) of Andropogon gerardii in unburned tallgrass prairie was compared to burned prairie in eastern Kansas. The standing dead reduced photosynthetically active radiation incident on emerging shoots by 58.8% in unburned compared to burned prairie during the initial 30 days of the growing season. Aboveground production in unburned prairie was similarly reduced during this period (55.4%) compared to burned prairie. Leaf temperatures in A. gerardii were greater in unburned prairie than in burned early in the season, but were nearly equal by the end of the growing season. The maximum elevation of Tleaf in unburned prairie above burned was 9.5 C. The maximum unburned Tleaf measured was 41.5 C compared to 39.4 C in burned prairie. Lower windspeed adjacent to leaves in unburned prairie resulting in reduced convective cooling may have caused higher Tleaf in unburned prairie. Leaf water potential was significantly lower in unburned prairie than in burned prairie early in the season but was higher in unburned prairie by late season. The seasonal minimum ѱleaf in burned prairie was — 1.60 MPa compared to —1.45 MPa in unburned prairie. The combined effect of these post-burn differences in solar radiation, Tleaf and ѱleaf may be significant in contributing to the lower production in unburned compared to burned tallgrass prairie.  相似文献   

4.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

5.
Recruitment, establishment and survivorship of seed- and vegetatively-derived shoots were quantified biweekly in annually burned and infrequently burned tallgrass prairie to investigate the contributions of seed and vegetative reproduction to the maintenance and dynamics of tallgrass prairie plant populations, the demography of seedlings and ramets, and the influence of fire on the demography of grasses and forbs. Clonally produced grass and forb ramets comprised >99%of all established shoots present at the end of the growing season, whereas established seedlings accounted for <1%,emphasizing the rarity of successful seedling establishment and the importance of vegetative reproduction in driving the annual regeneration and dynamics of aboveground plant populations in tallgrass prairie. Most recruitment from vegetative reproduction occurred early in the growing season and was higher in annually burned than infrequently burned sites, although low levels of new stem recruitment occurred continuously throughout the growing season. Peak recruitment on annually burned prairie coincided with peak recruitment of the dominant C4 grasses Andropogon gerardii and Sorghastrum nutans prior to prescribed spring fire, with a second peak in recruitment occurring following fire. On infrequently burned prairie, grass and forb recruitment was highest in early April and declined steadily through May. The naturalized C3 grass, Poa pratensis, was responsible for most of the early recruitment on unburned sites, whereas A. gerardii contributed most to recruitment later in May. Infrequently burned prairie was dominated by these two grasses and contained a larger forb component than annually burned prairie. The principal demographic effect of fire was on ramet natality rather than mortality. Fire regime, plant functional group, or timing of cohort emergence before or after fire did not affect ramet survivorship. C4 grass shoots that emerged early and were damaged by fire showed similar survivorship patterns to tillers that emerged after fire. Differences in species composition between annually burned and infrequently burned prairie are driven by fire effects on vegetative reproduction and appear to be related principally to the effect of fire and detritus accumulation on the development of belowground vegetative meristems of C4 grasses and their emergence dynamics.  相似文献   

6.
Historic losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to declines in diversity and abundance of plants and birds associated with such habitat. Prescribed burning is a management strategy that has potential for restoring and rejuvenating prairies in fragmented landscapes, and through such restoration, might create habitat for birds dependent upon prairies. To provide improved data for management decision-making regarding the use of prescribed fire in tallgrass prairies, we compared responses of plant and bird communities on five burned and five unburned tallgrass prairie fragments at the DeSoto National Wildlife Refuge, Iowa, USA, from 1995 to 1997. Overall species richness and diversity were unaffected by burning, but individual species of plants and birds were affected by year-treatment interactions, including northern bobwhite (Colinus virginianus) and ring-necked pheasant (Phasianus colchicus), which showed time-delayed increases in density on burned sites. Analyses of species/area relationships indicated that, collectively, many small sites did make significant contributions to plant biodiversity at landscape levels, supporting the overall conservation value of prairie fragments. In contrast, most birds species were present on larger sites. Thus, higher biodiversity in bird communities which contain area-sensitive species might require larger sites able to support larger, more stable populations, greater habitat heterogeneity, and greater opportunity for niche separation.  相似文献   

7.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

8.
Photosynthetic pigments and several structural characteristics were measured in leaves of Andropogon gerardii from tallgrass prairie populations in an unburned, low-irradiance site and a burned, high-irradiance site to determine if these species displayed sun/shade differences similar to those documented in forest species. Early in the growing season, leaves of A. gerardii in the low-irradiance, unburned site had significantly lower stomatal density, pore length, and conductance, as well as specific leaf mass and thickness than leaves from the high-irradiance, burned site. Moreover, the chlorophyll a:b ratio, carotenoid content, and bundle sheath-vascular complex area were significantly lower, but chlorophyll content (mass/mass) was greater in leaves in unburned vs. burned sites. These differences are consistent with sun/shade adaptations reported for forest understory plants and may contribute to the low productivity of A. gerardii in unburned tallgrass prairie.  相似文献   

9.
Rhizome meristem populations were sampled in tallgrass prairie to quantify the size, grass?:?forb composition, and temporal and spatial variability of the soil bud bank and to compare fire effects on bud bank and seed bank composition. Soil cores (10.5 cm diameter, 15 cm deep) were collected from replicate annually and infrequently burned tallgrass prairie sites, and intact rhizomes and rhizome buds were censused. Bud bank densities ranged from approximately 600 to 1800 meristems/m(2) among sites and had high spatial and seasonal variability. In annually burned prairie, the total bud bank density was two-fold greater and the grass?:?forb meristem ratio was more than 30-fold greater than that of infrequently burned prairie. These patterns are opposite those observed in soil seed banks at this site. The rhizome population in annually burned prairie was 34% larger than the established aboveground tiller population. By contrast, the bud bank density in unburned prairie was significantly lower than aboveground stem densities, indicating possible belowground meristem limitation of stem density and net primary production on infrequently burned prairie. The patterns observed in this study suggest that the densities and dynamics of tallgrass prairie plant populations, as well as their response to disturbance (e.g., fire and grazing) and climatic variability, may be mediated principally through effects on the demography of belowground bud populations. Patterns of seed reproduction and seed bank populations have little influence on short-term aboveground population dynamics of tallgrass prairie perennials.  相似文献   

10.
Assessing the various mechanisms by which plants revegetate disturbances is important for understanding the effects of disturbances on plant population dynamics, plant community structure, community assembly processes, and ecosystem function. We initiated a 2-yr experiment examining temporal vegetation dynamics and mechanisms of recolonization on different-sized soil disturbances created to simulate pocket gopher mounds in North American tallgrass prairie. Treatments were designed to assess potential contributions of the seed rain, soil seed bank, clonal propagation from the edges of a soil mound, and regrowth of buried plants. Small mounds were more rapidly recolonized than large mounds. Vegetative regrowth strategies were the dominant recolonization mechanisms, while the seed rain was considerably less important in maintaining the diversity of forbs and annuals than previously believed. All recolonization mechanisms influenced plant succession, but stem densities and plant mass on soil mounds remained significantly lower than undisturbed controls after two growing seasons. Because natural pocket gopher mounds are indistinguishable from undisturbed areas after two seasons, these results suggest that multiple modes of recruitment concurrently, albeit differentially, contribute to the recolonization of soil disturbances and influence tallgrass prairie plant community structure and successional dynamics.  相似文献   

11.
Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance.  相似文献   

12.
Dry woodlands frequently experience fire, and the heterogeneous spatial patterning of vegetation cover and fire behavior in these systems can lead to interspersed burned and unburned patches of different vegetation cover types. Biogeochemical processes may differ due to fire and vegetation cover influences on biotic and abiotic conditions, but these persistent influences of fire in the months or years following fire are not as well understood as the immediate impacts of fire. In particular, leaf litter decomposition, a process controlling nutrient availability and soil organic matter accumulation, is poorly understood in drylands but may be sensitive to vegetation cover and fire history. Decomposition is responsive to changes in abiotic drivers or interactions between abiotic conditions and biotic drivers, suggesting that decomposition rates may differ with vegetation cover and fire. The objective of this study was to assess the role of vegetation cover and fire on leaf litter decomposition in a semi-arid pinyon-juniper woodland in southern New Mexico, USA, where prescribed fire is used to combat increasing woody cover. A spatially heterogeneous prescribed burn led to closely co-located but discrete burned and unburned patches of all three dominant vegetation cover types (grass, shrub, tree). Decomposition rates of leaf litter from two species were measured in mesh litterbags deployed in factorial combination of the three vegetation cover types and two fire treatments (burned and unburned patches). For both litter types, decomposition was lower for unburned trees than for unburned grass or shrubs, perhaps due to greater soil–litter mixing and solar radiation away from tree canopies. Fire enhanced litter mass loss under trees, making decomposition rates similarly rapid in burned patches of all three vegetation cover types. Understanding decomposition dynamics in spatially heterogeneous vegetation cover of dry woodlands is critical for understanding biogeochemical process responses to fire in these systems.  相似文献   

13.
Ground beetle assemblages were monitored at four tallgrass prairie sites burned on 3-year cycles in northeastern Iowa. The objectives of this study were to quantify differences in carabid communities between original and reconstructed tallgrass prairies, and to determine the responses of ground beetles to 3-year cycles of early spring fire commonly used to manage tallgrass prairies. Using pitfall traps, ground beetle assemblages in two original and two reconstructed tallgrass prairies were compared between 1994 and 1998, where beetles were sampled annually (0-, 1-, and 2-year post-fire conditions) from plots burned every 3 years. When burned, the greatest abundance, activity density, and species richness of carabid beetles occurred the year immediately following a spring burn, with abundance declining steadily with increased time since burning. Overall ground beetle diversity as determined by Shannon's diversity index was greatest in original tallgrass prairies several years after a fire. Some species of ground beetles were found only in original prairies, while others were found primarily in reconstructed prairie. Similarly, some species were more abundant the year immediately following a burn, while others were found in greater abundance with increased time since fire. NMS ordination and indicator species analysis clearly show differences in carabid species between original and reconstructed tallgrass prairies, but did not show differences among burn treatments.  相似文献   

14.
Abstract. We document post‐fire succession on xeric sites in the southern Appalachian Mountains, USA and assess effects of 20th century reduction in fire frequency on vegetation structure and composition. Successional studies over 18 yr on permanent plots that had burned in 1976–1977 indicate that tree mortality and vegetation response varied with fuel load and fire season. In the first three years after fire, hardwood sprouts dominated tree regeneration. On sites where summer and autumn fires reduced litter depth to less than 1 cm, densities of shade‐intolerant Pinus seedlings increased steadily over this period. 4 to 8 yr after fire, large numbers of newly established seedlings and sprouts had grown to 1 – 10 cm DBH. By year 18 growth of these saplings led to canopy closure on most sites. Herbaceous cover and richness peaked in the first decade after fire, then declined. On similar sites that had not burned in more than 50 yr, regeneration of shade‐intolerant Pinus spp. and mean cover and richness of herbs were considerably lower than those observed on recently burned plots. Reconstructions of landscape conditions based on observed post‐fire succession and 20th century changes in fire regime suggest that reductions in fire frequency circa 1940 led to substantial changes in forest structure and decreases in cover and richness of herbaceous species.  相似文献   

15.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

16.
M. Lavoie  M. C. Mack 《Biogeochemistry》2012,107(1-3):227-239
In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15?cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between understory vegetation distribution and soil characteristics. Our results showed higher microbial respiration rates and microbial biomass in the oldest site and greater net N mineralization rates in the mid-successional site. Although spatial heterogeneity was absent at the scale studied for the majority of soil variables (60%), understory vegetation abundances and forest floor cover, spatial heterogeneity decreased with time after fire for the depth of organic horizon, soil microbial biomass, N mineralization rates and feathermoss cover. Our results also showed that increasing time after fire decreased the number of correlations between understory vegetation and soil characteristics while it increased between forest floor covers and soil characteristics. Overall, our study suggest that fire initially creates a patchy mosaic of forest floor cover, from fire hot spots, where high intensity burning exposes mineral soil, to practically unburned areas with intact mosses and lichens. As time since fire passes, forest floor cover and soil characteristics tend to become more uniform as understory species fill in severely burned areas.  相似文献   

17.
Habitat patchiness and plant species richness   总被引:2,自引:0,他引:2  
The pattern of woody species richness decline with a decrease in woody vegetation cover was studied within a tallgrass prairie. The decline in species richness is highly non-linear, with a well-defined threshold below which species richness collapses. This relationship can be understood after considering information on how landscape structure changes with woody vegetation cover, and how species richness is related to landscape structure.  相似文献   

18.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

19.
The size of the local species pool (i.e., species surrounding a community capable of dispersal into that community) and other dispersal limitations strongly influence native plant community composition. However, the role that the local species pool plays in determining the invasibility of communities by exotic plants remains to be evaluated. We hypothesized that the richness and abundance of exotic species would be greater in C4‐dominated grassland communities if the local species pool included a larger proportion of exotic species. We also predicted that an increase in the exotic species pool would increase the invasibility of sites thought to be resistant to invasion (annually burned grassland). To test these hypotheses, study plots were established within two long‐term (>20 yr) fire experiments at a tallgrass prairie preserve in NE Kansas (USA). Study plots were surrounded by either a small pool of exotic species (small species pool (SSP) plots; six species) or a larger exotic species pool (large species pool (LSP) plots; 18 species). We found that richness and absolute cover of exotic species was significantly (P<0.001) lower (~70 and 90%, respectively) in annually burned compared to unburned plots, regardless of the size of the exotic species pool. As predicted, exotic species richness was higher (P<0.001) for LSP plots (3.9 per 250 m2) than for SSP plots (0.7 per 250 m2); however, absolute cover was unaffected by the size of the exotic species pool. In the absence of fire, plots with a LSP had four times as many exotic species than SSP plots. An increase in the local exotic species pool also increased the invasibility of annually burned grassland. Indeed, richness of exotic plant species in annually burned LSP plots did not differ from unburned plots with a SSP, indicating that a larger pool of exotic species countered the negative effects of fire. These findings have important implications for predicting how the invasion of plant communities may respond to human‐induced global changes, such as habitat fragmentation. Community characteristics or factors such as frequent fires in grasslands may impart resistance to invasions by exotic species in large, intact ecosystems. However, when a large pool of exotic species is present, frequent fire may not be sufficient to limit the invasions of exotic plants in fragmented landscapes.  相似文献   

20.
This study aimed to assess the effects of accidental burning on plant cover and habitat conditions in abandoned Molinion caeruleae meadows. Field studies were conducted in Kraków (Southern Poland) in the years 2017–2019 in two line transects, each with 10 permanent plots established in permanent study plots placed in accidentally burned and unburned patches. In the burned patch, the number of species, as well as Shannon-Wiener, Pielou and Simpson indicators achieved lower values. Moreover, the cover of numerous taxa affiliated with Molinion caeruleae changed remarkably, while taxa representing the alliances Calthion and Filipendulion disappeared. The considerable dominance of hemicryptophytes was observed in burned site, while in unburned place hemicryptophytes and geophytes were represented most abundantly. In the burned patch, anemochorous and autochorous species as well as small-seeded taxa dominated, while in the unburned patch autochorous species and medium-seeded taxa prevailed. The values of Ellenberg indicators in the burned patch achieved greater (light, soil reaction), lower (nitrogen, humidity) or similar (temperature, continentality) values to the unburned patch. The majority of soil properties in the burned and unburned patches were similar with the exception of the significantly greater content of potassium and lower content of magnesium in exchangeable form noticed in the burned patch. The performed investigations showed that, although the accidental fire activity inhibited the secondary succession in Molinion caeruleae meadows, burning cannot replace traditional mowing due to the reduction of species richness and disappearance of characteristic taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号