首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pseudomonas acidovorans and Pseudomonas sp. strain ANL but not Salmonella typhimurium grew in an inorganic salts solution. The growth of P. acidovorans in this solution was not enhanced by the addition of 2.0 micrograms of phenol per liter, but the phenol was mineralized. Mineralization of 2.0 micrograms of phenol per liter by P. acidovorans was delayed 16 h by 70 micrograms of acetate per liter, and the delay was lengthened by increasing acetate concentrations, whereas phenol and acetate were utilized simultaneously at concentrations of 2.0 and 13 micrograms/liter, respectively. Growth of Pseudomonas sp. in the inorganic salts solution was not affected by the addition of 3.0 micrograms each of glucose and aniline per liter, nor was mineralization of the two compounds detected during the initial period of growth. However, mineralization of both substrates by this organism occurred simultaneously during the latter phases of growth and after growth had ended at the expense of the uncharacterized dissolved organic compounds in the salts solution. In contrast, when Pseudomonas sp. was grown in the salts solution supplemented with 300 micrograms each of glucose and aniline, the sugar was mineralized first, and aniline was mineralized only after much of the glucose carbon was converted to CO2. S. typhimurium failed to multiply in the salts solution with 1.0 micrograms of glucose per liter. It grew slightly but mineralized little of the sugar at 5.0 micrograms/liter, but its population density rose at 10 micrograms of glucose per liter or higher. The hexose could be mineralized at 0.5 micrograms/liter, however, if the solution contained 5.0 mg of arabinose per liter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We developed 12 models of kinetics to describe the metabolism of organic substrates that are not supporting bacterial growth. These models can be used to describe the biodegradation of organic compounds that are not supporting growth when the responsible populations are growing logistically, logarithmically, or linearly or are not increasing in numbers. Nonlinear regression analysis was used to fit patterns of mineralization by two bacteria to these kinetic models. Pseudomonas acidovorans mineralized 1 ng of phenol per ml while growing exponentially at the expense of uncharacterized organic carbon in a synthetic medium. Phenol at a concentration of 1 ng/ml did not affect the growth of P. acidovorans. These data were best fit by the model that incorporates the equation for logarithmic growth and assumes a concentration of test substrate well below its Km value. In the absence of a second substrate, glucose at concentrations below those supporting growth was mineralized by Salmonella typhimurium in a manner best described by pseudo first-order kinetics. In the presence of different concentrations of arabinose, however, the kinetics of glucose mineralization by S. typhimurium reflected linear, logistic, or logarithmic growth of the population on arabinose. We conclude that the kinetics of mineralization of organic compounds at concentrations too low to support growth are best described either by the first-order model or by models that incorporate expressions for the kinetics of growth of the metabolizing population on other substrates. When growth is at the expense of other substrates, the kinetics observed reflect such growth, as well as the concentration of the substrate of interest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We developed 12 models of kinetics to describe the metabolism of organic substrates that are not supporting bacterial growth. These models can be used to describe the biodegradation of organic compounds that are not supporting growth when the responsible populations are growing logistically, logarithmically, or linearly or are not increasing in numbers. Nonlinear regression analysis was used to fit patterns of mineralization by two bacteria to these kinetic models. Pseudomonas acidovorans mineralized 1 ng of phenol per ml while growing exponentially at the expense of uncharacterized organic carbon in a synthetic medium. Phenol at a concentration of 1 ng/ml did not affect the growth of P. acidovorans. These data were best fit by the model that incorporates the equation for logarithmic growth and assumes a concentration of test substrate well below its Km value. In the absence of a second substrate, glucose at concentrations below those supporting growth was mineralized by Salmonella typhimurium in a manner best described by pseudo first-order kinetics. In the presence of different concentrations of arabinose, however, the kinetics of glucose mineralization by S. typhimurium reflected linear, logistic, or logarithmic growth of the population on arabinose. We conclude that the kinetics of mineralization of organic compounds at concentrations too low to support growth are best described either by the first-order model or by models that incorporate expressions for the kinetics of growth of the metabolizing population on other substrates. When growth is at the expense of other substrates, the kinetics observed reflect such growth, as well as the concentration of the substrate of interest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Two strains of Pseudomonas able to grow on phenol or p-nitrophenol (PNP) were isolated from sewage. Pseudomonas sp. PN101 mineralized and formed nitrite from PNP but did not mineralize phenol, and Pseudomonas sp. PH111 mineralized phenol but not PNP. Phenol increased the lag period before Pseudomonas sp. PN101 grew on and mineralized PNP, but this toxicity was reduced by inoculation of the medium with Pseudomonas sp. PH111. PNP inhibited growth of Pseudomonas sp. PH111 and slightly increased the length of the acclimation period for the mineralization of phenol by the bacterium. Inoculation of Pseudomonas sp. PN101 into solutions containing PNP and phenol increased the lag period prior to growth of Pseudomonas sp. PH111 on phenol and markedly lengthened the lag period for its mineralization of phenol. Coinciding with this delay in the onset of phenol degradation was the accumulation of an organic compound formed from PNP by Pseudomonas sp. PN101. This compound was not mineralized by the phenol-degrading bacterium. The data suggest that bacteria may interact during the decomposition of chemical mixtures by destroying or by forming toxins that affect the biodegradation of individual components of those mixtures.  相似文献   

5.
The kinetics of simultaneous mineralization of p-nitrophenol (PNP) and glucose by Pseudomonas sp. were evaluated by nonlinear regression analysis. Pseudomonas sp. did not mineralize PNP at a concentration of 10 ng/ml but metabolized it at concentrations of 50 ng/ml or higher. The Ks value for PNP mineralization by Pseudomonas sp. was 1.1 micrograms/ml, whereas the Ks values for phenol and glucose mineralization were 0.10 and 0.25 micrograms/ml, respectively. The addition of glucose to the media did not enable Pseudomonas sp. to mineralize 10 ng of PNP per ml but did enhance the degradation of higher concentrations of PNP. This enhanced degradation resulted from the simultaneous use of glucose and PNP and the increased rate of growth of Pseudomonas sp. on glucose. The Monod equation and a dual-substrate model fit these data equally well. The dual-substrate model was used to analyze the data because the theoretical assumptions of the Monod equation were not met. Phenol inhibited PNP mineralization and changed the kinetics of PNP mineralization so that the pattern appeared to reflect growth, when in fact growth was not occurring. Thus, the fitting of models to substrate depletion curves may lead to erroneous interpretations of data if the effects of second substrates on population dynamics are not considered.  相似文献   

6.
The kinetics of simultaneous mineralization of p-nitrophenol (PNP) and glucose by Pseudomonas sp. were evaluated by nonlinear regression analysis. Pseudomonas sp. did not mineralize PNP at a concentration of 10 ng/ml but metabolized it at concentrations of 50 ng/ml or higher. The Ks value for PNP mineralization by Pseudomonas sp. was 1.1 micrograms/ml, whereas the Ks values for phenol and glucose mineralization were 0.10 and 0.25 micrograms/ml, respectively. The addition of glucose to the media did not enable Pseudomonas sp. to mineralize 10 ng of PNP per ml but did enhance the degradation of higher concentrations of PNP. This enhanced degradation resulted from the simultaneous use of glucose and PNP and the increased rate of growth of Pseudomonas sp. on glucose. The Monod equation and a dual-substrate model fit these data equally well. The dual-substrate model was used to analyze the data because the theoretical assumptions of the Monod equation were not met. Phenol inhibited PNP mineralization and changed the kinetics of PNP mineralization so that the pattern appeared to reflect growth, when in fact growth was not occurring. Thus, the fitting of models to substrate depletion curves may lead to erroneous interpretations of data if the effects of second substrates on population dynamics are not considered.  相似文献   

7.
Growth of phenol-mineralizing microorganisms in fresh water.   总被引:3,自引:3,他引:0       下载免费PDF全文
A method was developed to enumerate the procaryotic and eucaryotic phenol-mineralizing microorganisms present in samples of fresh water. Sixty-five percent or greater mineralization of [U-14C]phenol was considered a positive tube (contained phenol-mineralizing microorganisms) in the most-probable-number technique. Replicate most-probable-number tubes contained no microbial inhibitors, streptomycin and tetracycline, or cyclohexamide and nystatin plus 200 pg to 100 micrograms of phenol per ml. Phenol mineralization rates were obtained by measuring the amount of exogenous phenol that disappeared from solution over time in the presence or absence of the microbial inhibitors. Initially, less than 100 phenol-mineralizing bacteria per ml and 1 phenol-mineralizing fungus per ml were present at both 200 pg and 100 micrograms of phenol per ml. Phenol mineralization rates were 6.3 times greater for the mineralizing bacteria than for the fungi at 200 pg of phenol per ml. Phenol concentrations above 10 micrograms/ml were inhibitory to the microorganisms capable of mineralizing phenol. The phenol mineralizers grew in the water samples in the absence of phenol, indicating that there were sufficient indigenous nutrients in the lake water to support growth. There was no difference in the growth rate of these microorganisms in the presence or absence of 1 ng of phenol per ml, whereas the growth rate was more rapid at 1 microgram of phenol per ml than in its absence. There was a correlation between microbial growth and the amount of phenol mineralized at 1 microgram but not at 1 ng of phenol per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A method was developed to enumerate the procaryotic and eucaryotic phenol-mineralizing microorganisms present in samples of fresh water. Sixty-five percent or greater mineralization of [U-14C]phenol was considered a positive tube (contained phenol-mineralizing microorganisms) in the most-probable-number technique. Replicate most-probable-number tubes contained no microbial inhibitors, streptomycin and tetracycline, or cyclohexamide and nystatin plus 200 pg to 100 micrograms of phenol per ml. Phenol mineralization rates were obtained by measuring the amount of exogenous phenol that disappeared from solution over time in the presence or absence of the microbial inhibitors. Initially, less than 100 phenol-mineralizing bacteria per ml and 1 phenol-mineralizing fungus per ml were present at both 200 pg and 100 micrograms of phenol per ml. Phenol mineralization rates were 6.3 times greater for the mineralizing bacteria than for the fungi at 200 pg of phenol per ml. Phenol concentrations above 10 micrograms/ml were inhibitory to the microorganisms capable of mineralizing phenol. The phenol mineralizers grew in the water samples in the absence of phenol, indicating that there were sufficient indigenous nutrients in the lake water to support growth. There was no difference in the growth rate of these microorganisms in the presence or absence of 1 ng of phenol per ml, whereas the growth rate was more rapid at 1 microgram of phenol per ml than in its absence. There was a correlation between microbial growth and the amount of phenol mineralized at 1 microgram but not at 1 ng of phenol per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Reasons for possible failure of inoculation to enhance biodegradation.   总被引:18,自引:8,他引:10       下载免费PDF全文
Pseudomonas strains capable of mineralizing 2,4-dichlorophenol (DCP) and p-nitrophenol (PNP) in culture media were isolated from soil. One DCP-metabolizing strain mineralized 1.0 and 10 micrograms of DCP but not 2.0 to 300 ng/ml in culture. When added to lake water containing 10 micrograms of DCP per ml, the bacterium did not mineralize the compound, and only after 6 days did it cause the degradation of 1.0 microgram of DCP per ml. The organism did not grow or metabolize DCP when inoculated into sterile lake water, but it multiplied in sterile lake water amended with glucose or with DCP and supplemental nutrients. Its population density declined and DCP was not mineralized when the pseudomonad was added to nonsterile sewage, but the bacterium grew in sterile DCP-amended sewage, although not causing appreciable mineralization of the test compound. Addition of the bacterium to nonsterile soil did not result in the mineralization of 10 micrograms of DCP per g, although mineralization was evident if the inoculum was added to sterile soil. A second DCP-utilizing pseudomonad failed to mineralize DCP when added to the surface of sterile soil, although activity was evident if the inoculum was mixed with the soil. A pseudomonad able to mineralize 5.0 micrograms of PNP per ml in culture did not mineralize the compound in sterile or nonsterile lake water. The bacterium destroyed PNP in sterile sewage and enhanced PNP mineralization in nonsterile sewage. When added to the surface of sterile soil, the bacterium mineralized little of the PNP present at 5.0 micrograms/g, but it was active if mixed well with the sterile soil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Secondary substrate utilization of methylene chloride was analyzed by using Pseudomonas sp. strain LP. Both batch and continuously fed reactors demonstrated that this strain was capable of simultaneously consuming two substrates at different concentrations: the primary substrate at the higher concentration (milligrams per liter) and the secondary substrate at the lower concentration (micrograms per liter). The rate of methylene chloride utilization at trace concentrations was greater in the presence of the primary substrate, acetate, than without it. However, when the substrate roles were changed, the acetate secondary substrate utilization rate was less when methylene chloride was present. Thus, substrate interactions are important in the kinetics of secondary substrate utilization. Pseudomonas sp. strain LP showed a preference toward degrading methylene chloride over acetate, whether it was the primary or secondary substrate, providing it was below an inhibitory concentration of ca. 10 mg/liter.  相似文献   

11.
Strains of Moraxella sp., Pseudomonas sp., and Flavobacterium sp. able to grow on biphenyl were isolated from sewage. The bacteria produced 2.3 to 4.5 g of protein per mol of biphenyl carbon, and similar protein yields were obtained when the isolates were grown on succinate. Mineralization of biphenyl was exponential during the phase of exponential growth of Moraxella sp. and Pseudomonas sp. In biphenyl-supplemented media, Flavobacterium sp. had one exponential phase of growth apparently at the expense of contaminating dissolved carbon in the solution and a second exponential phase during which it mineralized the hydrocarbon. Phase-contrast microscopy did not show significant numbers of cells of these three species on the surface of the solid substrate as it underwent decomposition. Pseudomonas sp. did not form products that affected the solubility of biphenyl, although its excretions did increase the dissolution rate. It was calculated that Pseudomonas sp. consumed 29 nmol of biphenyl per ml in the 1 h after the end of the exponential phase of growth, but 32 nmol of substrate per ml went into solution in that period when the growth rate had declined. In a medium with anthracene as the sole added carbon source, Flavobacterium sp. converted 90% of the substrate to water-soluble products, and a slow mineralization was detected when the cell numbers were not increasing. Flavobacterium sp. and Beijerinckia sp. initially grew exponentially and then arithmetically in media with phenanthrene as the sole carbon source. Calculations based on the growth rates of these bacteria and the rates of dissolution of phenanthrene suggest that the dissolution rate of the hydrocarbon may limit the rate of its biodegradation.  相似文献   

12.
Secondary substrate utilization of methylene chloride was analyzed by using Pseudomonas sp. strain LP. Both batch and continuously fed reactors demonstrated that this strain was capable of simultaneously consuming two substrates at different concentrations: the primary substrate at the higher concentration (milligrams per liter) and the secondary substrate at the lower concentration (micrograms per liter). The rate of methylene chloride utilization at trace concentrations was greater in the presence of the primary substrate, acetate, than without it. However, when the substrate roles were changed, the acetate secondary substrate utilization rate was less when methylene chloride was present. Thus, substrate interactions are important in the kinetics of secondary substrate utilization. Pseudomonas sp. strain LP showed a preference toward degrading methylene chloride over acetate, whether it was the primary or secondary substrate, providing it was below an inhibitory concentration of ca. 10 mg/liter.  相似文献   

13.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Kinetics of mineralization of organic compounds at low concentrations in soil   总被引:10,自引:0,他引:10  
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The patterns of mineralization of 4.0 ng of 2,4-dichlorophenol per g of soil and 20 ng of nitrilotriacetic acid per g of soil were similar to the patterns for phenol and aniline. The patterns of mineralization of 1.0 to 100 ng of p-nitrophenol and 6.0 ng of benzylamine per g of soil were also biphasic but after a short apparent lag period. The curves of CO2 evolution from higher concentrations of phenol and p-nitrophenol had increasing apparent lag phases and were S-shaped or linear. Cumulative plots of the percentage of substrate converted to CO2 were fit by nonlinear regression to first-order, integrated Monod, logistic, logarithmic, zero-order, three-half-order, and two-compartment models. None of the models of the Monod family provided the curve of best fit to any of the patterns of mineralization. The linear growth form of the three-half-order model provided the best fit for the mineralization of p-nitrophenol, with the exception of the lowest concentrations, and of benzylamine. The two-compartment model provided the best fit for the mineralization of concentrations of phenol below 100 ng/g, of several concentrations of aniline, and of nitrilotriacetic acid. It is concluded that models derived from the Monod equation, including the first-order model, do not adequately describe the kinetics of mineralization of low concentrations of chemicals added to soil.  相似文献   

16.
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The patterns of mineralization of 4.0 ng of 2,4-dichlorophenol per g of soil and 20 ng of nitrilotriacetic acid per g of soil were similar to the patterns for phenol and aniline. The patterns of mineralization of 1.0 to 100 ng of p-nitrophenol and 6.0 ng of benzylamine per g of soil were also biphasic but after a short apparent lag period. The curves of CO2 evolution from higher concentrations of phenol and p-nitrophenol had increasing apparent lag phases and were S-shaped or linear. Cumulative plots of the percentage of substrate converted to CO2 were fit by nonlinear regression to first-order, integrated Monod, logistic, logarithmic, zero-order, three-half-order, and two-compartment models. None of the models of the Monod family provided the curve of best fit to any of the patterns of mineralization. The linear growth form of the three-half-order model provided the best fit for the mineralization of p-nitrophenol, with the exception of the lowest concentrations, and of benzylamine. The two-compartment model provided the best fit for the mineralization of concentrations of phenol below 100 ng/g, of several concentrations of aniline, and of nitrilotriacetic acid. It is concluded that models derived from the Monod equation, including the first-order model, do not adequately describe the kinetics of mineralization of low concentrations of chemicals added to soil.  相似文献   

17.
Reasons for possible failure of inoculation to enhance biodegradation   总被引:14,自引:0,他引:14  
Pseudomonas strains capable of mineralizing 2,4-dichlorophenol (DCP) and p-nitrophenol (PNP) in culture media were isolated from soil. One DCP-metabolizing strain mineralized 1.0 and 10 micrograms of DCP but not 2.0 to 300 ng/ml in culture. When added to lake water containing 10 micrograms of DCP per ml, the bacterium did not mineralize the compound, and only after 6 days did it cause the degradation of 1.0 microgram of DCP per ml. The organism did not grow or metabolize DCP when inoculated into sterile lake water, but it multiplied in sterile lake water amended with glucose or with DCP and supplemental nutrients. Its population density declined and DCP was not mineralized when the pseudomonad was added to nonsterile sewage, but the bacterium grew in sterile DCP-amended sewage, although not causing appreciable mineralization of the test compound. Addition of the bacterium to nonsterile soil did not result in the mineralization of 10 micrograms of DCP per g, although mineralization was evident if the inoculum was added to sterile soil. A second DCP-utilizing pseudomonad failed to mineralize DCP when added to the surface of sterile soil, although activity was evident if the inoculum was mixed with the soil. A pseudomonad able to mineralize 5.0 micrograms of PNP per ml in culture did not mineralize the compound in sterile or nonsterile lake water. The bacterium destroyed PNP in sterile sewage and enhanced PNP mineralization in nonsterile sewage. When added to the surface of sterile soil, the bacterium mineralized little of the PNP present at 5.0 micrograms/g, but it was active if mixed well with the sterile soil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A study was conducted to determine the role of concentration of the test chemical, of a second organic compound, and of mutation in the acclimation period before the mineralization of organic compounds in sewage. The acclimation period for the mineralization in sewage of 2 micrograms of 4-nitrophenol (PNP) per liter increased from 6 to 12 days in the presence of 10 mg of 2,4-dinitrophenol per liter. The extension of the acclimation period was equivalent to the time required for mineralization of 2,4-dinitrophenol. In contrast, the time for acclimation for the degradation of 2 micrograms of PNP per liter was reduced when 10 or 100 mg of phenol per liter was added. Lower phenol levels increased the acclimation period to 8 days. The length of the acclimation period for PNP mineralization decreased as the initial concentration of PNP increased from 2 micrograms to 100 mg/liter. The acclimation period for phenol mineralization was lengthened as the phenol concentration increased from 100 to 1,400 mg/liter. The length of the acclimation period for PNP and phenol biodegradation was reproducible, but it varied among replicates for the biodegradation of other nitro-substituted compounds added to sewage or lake water, suggesting that a mutation was responsible for acclimation to these other compounds. The acclimation period may thus reflect the time required for the destruction of toxins, and it also may be affected by the concentration of the test compound or the presence of other substrates.  相似文献   

19.
A study was conducted to determine the role of concentration of the test chemical, of a second organic compound, and of mutation in the acclimation period before the mineralization of organic compounds in sewage. The acclimation period for the mineralization in sewage of 2 micrograms of 4-nitrophenol (PNP) per liter increased from 6 to 12 days in the presence of 10 mg of 2,4-dinitrophenol per liter. The extension of the acclimation period was equivalent to the time required for mineralization of 2,4-dinitrophenol. In contrast, the time for acclimation for the degradation of 2 micrograms of PNP per liter was reduced when 10 or 100 mg of phenol per liter was added. Lower phenol levels increased the acclimation period to 8 days. The length of the acclimation period for PNP mineralization decreased as the initial concentration of PNP increased from 2 micrograms to 100 mg/liter. The acclimation period for phenol mineralization was lengthened as the phenol concentration increased from 100 to 1,400 mg/liter. The length of the acclimation period for PNP and phenol biodegradation was reproducible, but it varied among replicates for the biodegradation of other nitro-substituted compounds added to sewage or lake water, suggesting that a mutation was responsible for acclimation to these other compounds. The acclimation period may thus reflect the time required for the destruction of toxins, and it also may be affected by the concentration of the test compound or the presence of other substrates.  相似文献   

20.
A microbial surfactant (biosurfactant) was investigated for its potential to enhance bioavailability and, hence, the biodegradation of octadecane. The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa ATCC 9027 in phosphate-limited proteose peptone-glucose-ammonium salts medium. Dispersion of octadecane in aqueous solutions was dramatically enhanced by 300 mg of the rhamnolipid biosurfactant per liter, increasing by a factor of more than 4 orders of magnitude, from 0.009 to > 250 mg/liter. The relative enhancement of octadecane dispersion was much greater at low rhamnolipid concentrations than at high concentrations. Rhamnolipid-enhanced octadecane dispersion was found to be dependent on pH and shaking speed. Biodegradation experiments done with an initial octadecane concentration of 1,500 mg/liter showed that 20% of the octadecane was mineralized in 84 h in the presence of 300 mg of rhamnolipid per liter, compared with only 5% octadecane mineralization when no surfactant was present. These results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号