首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part, through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normal T-cells expressed and secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study we investigated the role of reactive oxygen species in the induction of RANTES gene expression in human type II alveolar epithelial cells (A549), following RSV infection. Our results indicate that RSV infection of airway epithelial cells rapidly induces reactive oxygen species production, prior to RANTES expression, as measured by oxidation of 2',7'-dichlorofluorescein. Pretreatment of airway epithelial cells with the antioxidant butylated hydroxyanisol (BHA), as well a panel of chemically unrelated antioxidants, blocks RSV-induced RANTES gene expression and protein secretion. This effect is mediated through the ability of BHA to inhibit RSV-induced interferon regulatory factor binding to the RANTES promoter interferon-stimulated responsive element, that is absolutely required for inducible RANTES promoter activation. BHA inhibits de novo interferon regulator factor (IRF)-1 and -7 gene expression and protein synthesis, and IRF-3 nuclear translocation. Together, these data indicates that a redox-sensitive pathway is involved in RSV-induced IRF activation, an event necessary for RANTES gene expression.  相似文献   

5.
6.
7.
Transporter associated with antigen processing 2 (Tap-2) is responsible for ATP-dependent transport of peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly synthesized human leukocyte antigen (HLA) class I molecules, which are essential for cellular immune responses. Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) has been shown to induce the expression of Tap-2. In this study, the induction of endogenous Tap-2 by LMP-1 is shown to be associated with and requires the expression of interferon regulatory factor 7 (IRF-7). In DG75 Burkitt's lymphoma (BL) cells, in which LMP-1 induces the expression of IRF-7, LMP-1 induced endogenous Tap-2, and ectopic expression of IRF-7 could enhance the induction. In Akata BL cells, in which LMP-1 could not induce IRF-7, LMP-1 could not induce Tap-2. Addition of IRF-7, which complements the defect in Akata cells, could stimulate the expression of Tap-2. Furthermore, LMP-1 and IRF-7A but not other IRF-7 splicing variants could activate endogenous Tap-2. A Tap-2 promoter reporter construct could be activated by the overexpression of IRF-7A. The activation could be specifically enhanced by LMP-1 and was dependent on an intact interferon-stimulated response element (ISRE) present in the Tap-2 promoter. Also, IRF-7 can bind to the Tap-2 promoter under physiological conditions in vivo, as shown by formaldehyde cross-linking, as well as to the Tap-2 ISRE in vitro, as shown by gel mobility shift assays. Furthermore, LMP-1 facilitates the phosphorylation and nuclear translocation of IRF-7. These data point to the role of IRF-7 as a secondary mediator of LMP-1-activated signal transduction for Tap-2 as follows: LMP-1 stimulates the expression of IRF-7 and facilitates its phosphorylation and nuclear translocation, and then the activated IRF-7 mediates the activation of the cellular Tap-2 gene. The induction of Tap-2 by IRF-7 and LMP-1 may have an important implication for the immune response to EBV and its persistence in vivo.  相似文献   

8.
9.
10.
The cloning and functional characterization of a novel interferon regulatory factor (IRF), IRF-10, are described. IRF-10 is most closely related to IRF-4 but differs in both its constitutive and inducible expression. The expression of IRF-10 is inducible by interferons (IFNs) and by concanavalin A. In contrast to that of other IRFs, the inducible expression of IRF-10 is characterized by delayed kinetics and requires protein synthesis, suggesting a unique role in the later stages of an antiviral defense. Accordingly, IRF-10 is involved in the upregulation of two primary IFN-gamma target genes (major histocompatibility complex [MHC] class I and guanylate-binding protein) and interferes with the induction of the type I IFN target gene for 2',5'-oligo(A) synthetase. IRF-10 binds the interferon-stimulated response element site of the MHC class I promoter. In contrast to that of IRF-1, which has some of the same functional characteristics, the expression of IRF-10 is not cytotoxic for fibroblasts or B cells. The expression of IRF-10 is induced by the oncogene v-rel, the proto-oncogene c-rel, and IRF-4 in a tissue-specific manner. Moreover, v-Rel and IRF-4 synergistically cooperate in the induction of IRF-10 in fibroblasts. The level of IRF-10 induction in lymphoid cell lines by Rel proteins correlates with Rel transformation potential. These results suggest that IRF-10 plays a role in the late stages of an immune defense by regulating the expression some of the IFN-gamma target genes in the absence of a cytotoxic effect. Furthermore, IRF-10 expression is regulated, at least in part, by members of the Rel/NF-kappa B and IRF families.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Interferon regulatory factors (IRFs) are a family of DNA-binding proteins involved in mediating the cellular response to interferons (IFNs) and viral infection. Although extensively studied in mammals, IRFs of other vertebrates have been less well characterized. Previously, we cloned chicken interferon regulatory factor-3 (chIRF-3) mRNA, which is rapidly and transiently induced by double-stranded (ds)RNA. The chIRF-3 mRNA encodes a protein distinct from any known mammalian IRF. Here, we show that chIRF-3 is activated additively by type I and type II IFNs. To delineate the sequence elements required to regulate chIRF-3 expression, we cloned chlRF-3 and 0.48 kb of 5' flanking sequence. Computer analysis of the proximal promoter revealed three putative binding sites for nuclear factor (NF)-kappaB, two overlapping interferon-stimulated response elements (ISREs), and an interferon gamma activating sequence (GAS). The presence of both GAS and ISRE consensus sequences in the chIRF-3 promoter is unique among IRF family members. Both type I and II IFNs, as well as dsRNA and IRF-1, trans-activate the promoter in short-term transfection experiments. Mutational analysis of the promoter demonstrated that the putative NF-kappaB binding sites are needed for stimulation by dsRNA but not by either type I or type II IFN and that both the overlapping ISREs and GAS are required for full induction by type I or type II IFN.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号