首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

2.
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.  相似文献   

3.
Simple sequence repeat (SSR) markers provide a powerful tool for genetic linkage map construction that can be applied for identification of quantitative trait loci (QTL). In this study, a total of 640 new SSR markers were developed from an enriched genomic DNA library of the cassava variety 'Huay Bong 60' and 1,500 novel expressed sequence tag-simple sequence repeat (EST-SSR) loci were developed from the Genbank database. To construct a genetic linkage map of cassava, a 100 F(1) line mapping population was developed from the cross Huay Bong 60 by 'Hanatee'. Polymorphism screening between the parental lines revealed that 199 SSRs and 168 EST-SSRs were identified as novel polymorphic markers. Combining with previously developed SSRs, we report a linkage map consisted of 510 markers encompassing 1,420.3?cM, distributed on 23 linkage groups with a mean distance between markers of 4.54?cM. Comparison analysis of the SSR order on the cassava linkage map and the cassava genome sequences allowed us to locate 284 scaffolds on the genetic map. Although the number of linkage groups reported here revealed that this F(1) genetic linkage map is not yet a saturated map, it encompassed around 88% of the cassava genome indicating that the map was almost complete. Therefore, sufficient markers now exist to encompass most of the genomes and efficiently map traits in cassava.  相似文献   

4.
A microsatellite (simple sequence repeat; SSR) panel for Cryptomeria japonica was established, using both newly developed and previously reported markers, to construct a frame of linkage map and facilitate localization of important genes in this species. In this study, 32 new expressed sequence tag SSRs (EST-SSRs) and 12 new genomic SSRs (gSSRs) were developed. Their average polymorphism information content (PIC) values were 0.549 and 0.776, respectively. The markers were mapped onto a high-density linkage map. The SSR panel that was established to cover the genome consisted of 46 gSSRs and 47 EST-SSRs. The number of SSR markers in each linkage group, the average map distance between loci within a linkage group, and the average PIC values in each linkage group ranged from 6 to 13, 6.77 to 19.88 and 0.475 to 0.712, respectively. The utility of the SSR panel was tested by using it to localize a male-sterile gene, ms-2. The ms-2 locus was successfully localized on the linkage group 5 using 33 SSR markers (three SSRs per linkage group) which were selected from the SSR panel based on the existence of polymorphisms and the absence of null alleles in the mapping population for ms-2. A partial linkage map surrounding the ms-2 locus was then constructed using a further 57 single nucleotide polymorphisms and three SSRs, to facilitate future development of markers tightly linked to the ms-2 locus for use in marker-assisted selection. The SSR panel covering the C. japonica genome will allow researchers to localize important genes efficiently.  相似文献   

5.
6.
Simple sequence repeat (SSR) loci are an important marker type for population genetic studies despite the limitation that development of novel loci requires construction and screening of genomic DNA libraries. The common practice of size fractioning genomic DNA before cloning could lead to differential representation of SSR loci within genomic libraries. In addition, linkage mapping studies have shown that small numbers of SSR markers are not randomly distributed within the genomes from which they are isolated. From attempts to clone five SSR repeat sequences in two wild plant species we show that the numbers and repeat type of potential SSR markers depend on the restriction endonuclease used to sample the genome when constructing DNA libraries. This observation is consistent with unequal sampling of the genome by different restriction enzymes. However, as a group the five SSR repeat sequences are not associated with a given restriction enzyme, suggesting they are not clumped within the genome. Use of multiple restriction enzymes to construct DNA libraries may help ensure that cloned SSR loci are drawn from diverse locations in the genome, helping to meet the assumption of randomly located marker loci required for population genetic inferences.  相似文献   

7.
In order to enhance the resolution of an existing genetic map of rice, and to obtain a comprehensive picture of marker utility and genomic distribution of microsatellites in this important grain species, rice DNA sequences containing simple sequence repeats (SSRs) were extracted from several small-insert genomic libraries and from the database. One hundred and eighty eight new microsatellite markers were developed and evaluated for allelic diversity. The new simple sequence length polymorphisms (SSLPs) were incorporated into the existing map previously containing 124 SSR loci. The 312 microsatellite markers reported here provide whole-genome coverage with an average density of one SSLP per 6 cM. In this study, 26 SSLP markers were identified in published sequences of known genes, 65 were developed based on partial cDNA sequences available in GenBank, and 97 were isolated from genomic libraries. Microsatellite markers with different SSR motifs are relatively uniformly distributed along rice chromosomes regardless of whether they were derived from genomic clones or cDNA sequences. However, the distribution of polymorphism detected by these markers varies between different regions of the genome. Received: 5 May 1999 / Accepted: 16 August 1999  相似文献   

8.
To make progress in genome analysis of azuki bean (Vigna angularis) a genetic linkage map was constructed from a backcross population of (V. nepalensis x V. angularis) x V.angularis consisting of 187 individuals. A total of 486 markers—205 simple sequence repeats (SSRs), 187 amplified fragment length polymorphisms (AFLPs) and 94 restriction fragment length polymorphisms (RFLPs) —were mapped onto 11 linkage groups corresponding to the haploid chromosome number of azuki bean. This map spans a total length of 832.1 cM with an average marker distance of 1.85 cM and is the most saturated map for a Vigna species to date. In addition, RFLP markers from other legumes facilitated finding several orthologous linkage groups based on previously published RFLP linkage maps. Most SSR primers that have been developed from SSR-enriched libraries detected a single locus. The SSR loci identified are distributed throughout the azuki bean genome. This moderately dense linkage map equipped with many SSR markers will be useful for mapping a range of useful traits such as those related to domestication and stress resistance. The mapping population will be used to develop advanced backcross lines for high resolution QTL mapping of these traits. O.K. Han, A. Kaga, T. Isemura have contributed equally to this paper.  相似文献   

9.
A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database () to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15 cM.E. Silfverberg-Dilworth and C. L. Matasci contributed equally to this work.  相似文献   

10.
Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.  相似文献   

11.
Yu F  Wang BH  Feng SP  Wang JY  Li WG  Wu YT 《Plant cell reports》2011,30(3):335-344
Genomic simple sequence repeat (SSR) markers are particularly valuable in studies of genetic diversity, evolution, genetic linkage map construction, quantitative trait loci tagging, and marker-assisted selection because of their multi-allelic nature, reproducibility, co-dominant inheritance, high abundance, and extensive genome coverage. The traditional methods of SSR marker development, such as genomic-SSR hybrid screening and microsatellite enrichment, have the disadvantages of high cost and complex operation. The selectively amplified microsatellite method is less costly and highly efficient as well as being simple and convenient. In this study, 252 sequences with SSRs were cloned from the rubber tree (Hevea brasiliensis) genome from which 258 SSR loci were obtained. The average repeat number was six. There were only 10 (3.9%) mononucleotide, trinucleotide, and pentanucleotide repeats, whereas the remaining 248 (96.1%) were dinucleotide repeats, including 128 (49.6%) GT/CA repeats, 118 (45.7%) GA/CT repeats, and 2 (0.8%) AT/TA repeats. A total of 126 primer pairs (see ESM) were successfully designed of which 36 primer pairs generated polymorphic products from 12 accessions of the cultivated species, 4 related species, and 3 species of the family Euphorbiaceae. In addition, investigations based on four genomic SSRs (GAR4, ACR22, CTR25, and GTR28) by cloning and sequencing provided evidence for cross-species/genera applicability, and homologous sequences were obtained from the rubber tree and Euphorbiaceae. Further analysis about the variation of the flanking regions of the four markers was carried out.  相似文献   

12.
The development of PCR-based, easily automated molecular genetic markers, such as SSR markers, are required for realistic cost-effective marker-assisted selection schemes. This paper describes the development and characterization of 172 new SSR markers for the cassava genome. The placement of 36 of these markers on the existing RFLP framework map of cassava is also reported. Two similar enrichment methods were employed. The first method yielded 35 SSR loci, for which primers could be designed, out of 148 putative DNA clones. A total of 137 primer pairs could be designed from 544 putative clones sequenced for the second enrichment. Most of the SSRs (95%) were di-nucleotide repeats, and 21% were compound repeats. A major drawback of these methods of SSR discovery is the redundancy – 20% duplication; in addition, primers could not be designed for many SSR loci that were too close to the cloning site – 45% of the total. All 172 SSRs amplified the corresponding loci in the parents of the mapping progeny, with 66% of them revealing a unique allele in at least one of the parents, and 26% having unique alleles in both of the parents. Of the 36 SSRs that have been mapped, at least 1 was placed on 16 out of the 18 linkage groups of the framework map, indicating a broad coverage of the cassava genome. This preliminary mapping of the 36 markers has led to the joining of a few small groups and the creation of one new group. The abundance of allelic bridges as shown by these markers will lead to the development of a consensus map of the male- and female-derived linkage groups. In addition, the relatively higher number of these allelic bridges, 30% as against 10% for RFLPs in cassava, underscores SSR as the marker of choice for cassava. The 100% primer amplification obtained for this set of primers also confirms the appropriateness of SSR markers for use in cassava genome analysis and the transferability of the technology as a low-cost approach to increasing the efficiency of cassava breeding. Current efforts are geared towards the generation of more SSR markers to attain a goal of 200 SSR markers, or 1 SSR marker every 10 cM. Received: 15 November 1999 / Accepted: 14 April 2000  相似文献   

13.
Construction of a reference linkage map for melon.   总被引:19,自引:0,他引:19  
A map of melon (Cucumis melo L.) with 411 markers (234 RFLPs, 94 AFLPs, 47 RAPDs, 29 SSRs, five inter-SSRs, and two isozymes) and one morphological trait (carpel number) was constructed using the F2 progeny of a cross between the Korean accession P1161375 and the Spanish melon type 'Pinyonet Piel de Sapo'. RFLPs were obtained using 212 probes from different genomic and cDNA melon libraries, including 16 Arabidopsis ESTs, 13 Cucumis known genes, and three resistant gene homologues. Most loci (391) mapped to 12 major linkage groups, spanning a total genetic distance of 1197 cM, with an average map interval of 3 cM/marker. The remaining 21 loci (six RAPDs and 15 AFLPs) were not linked. A majority (66%) of the markers were codominant (RFLPs, SSRs, and isozymes), making them easily transferable to other melon crosses. Such markers can be used as a reference, to merge other melon and cucumber maps already constructed. Indeed, some of them (23 SSRs, 14 RFLPs, one isozyme, and one morphological trait) could act as anchor points with other published cucurbit maps.  相似文献   

14.
We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).  相似文献   

15.
Simple sequence repeat map of the sunflower genome   总被引:11,自引:0,他引:11  
Several independent molecular genetic linkage maps of varying density and completeness have been constructed for cultivated sunflower ( Helianthus annuus L.). Because of the dearth of sequence and probe-specific DNA markers in the public domain, the various genetic maps of sunflower have not been integrated and a single reference map has not emerged. Moreover, comparisons between maps have been confounded by multiple linkage group nomenclatures and the lack of common DNA markers. The goal of the present research was to construct a dense molecular genetic linkage map for sunflower using simple sequence repeat (SSR) markers. First, 879 SSR markers were developed by identifying 1,093 unique SSR sequences in the DNA sequences of 2,033 clones isolated from genomic DNA libraries enriched for (AC)(n) or (AG)(n) and screening 1,000 SSR primer pairs; 579 of the newly developed SSR markers (65.9% of the total) were polymorphic among four elite inbred lines (RHA280, RHA801, PHA and PHB). The genetic map was constructed using 94 RHA280 x RHA801 F(7) recombinant inbred lines (RILs) and 408 polymorphic SSR markers (462 SSR marker loci segregated in the mapping population). Of the latter, 459 coalesced into 17 linkage groups presumably corresponding to the 17 chromosomes in the haploid sunflower genome ( x = 17). The map was 1,368.3-cM long and had a mean density of 3.1 cM per locus. The SSR markers described herein supply a critical mass of DNA markers for constructing genetic maps of sunflower and create the basis for unifying and cross-referencing the multitude of genetic maps developed for wild and cultivated sunflowers.  相似文献   

16.
A microsatellite map of white clover   总被引:11,自引:2,他引:9  
The white clover (Trifolium repens) nuclear genome (n=2x=16) is an important yet under-characterised genetic environment. We have developed simple sequence repeat (SSR) genetic markers for the white clover genome by mining an expressed sequence tag (EST) database and by isolation from enriched genomic libraries. A total of 2,086 EST-derived SSRs (EST-SSRs) were identified among 26,480 database accessions. Evaluation of 792 EST-SSR primer pairs resulted in 566 usable EST-SSRs. Of these, 335 polymorphic EST-SSRs, used in concert with 30 genomic SSRs, detected 493 loci in the white clover genome using 92 F1 progeny from a pair cross between two highly heterozygous genotypes—364/7 and 6525/5. Map length, as estimated using the joinmap algorithm, was 1,144 cM and spanned all 16 homologues. The R (red leaf) locus was mapped to linkage group B1 and is tightly linked to the microsatellite locus prs318c. The eight homoeologous pairs of linkage groups within the white clover genome were identified using 96 homoeologous loci. Segregation distortion was detected in four areas (groups A1, D1, D2 and H2). Marker locus density varied among and within linkage groups. This is the first time EST-SSRs have been used to build a whole-genome functional map and to describe subgenome organisation in an allopolyploid species, and T. repens is the only Trifolieae species to date to be mapped exclusively with SSRs. This gene-based microsatellite map will enable the resolution of quantitative traits into Mendelian characters, the characterisation of syntenic relationships with other genomes and acceleration of white clover improvement programmes.  相似文献   

17.
An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench.   总被引:5,自引:0,他引:5  
We report the development, testing, and use (for genetic mapping) of a large number of polymerase chain reaction (PCR) primer sets that amplify DNA simple sequence repeat (SSR) loci of Sorghum bicolor (L.) Moench. Most of the primer sets were developed from clones isolated from two sorghum bacterial artificial chromosome (BAC) libraries and three enriched sorghum genomic-DNA (gDNA) libraries. A few were developed from sorghum DNA sequences present in public databases. The libraries were probed with radiolabeled di- and trinucleotide oligomers, the BAC libraries with four and six oligomers, respectively, and the enriched gDNA libraries with four and three oligomers, respectively. Both types of libraries were markedly enriched for SSRs relative to a size-fractionated gDNA library studied earlier. However, only 2% of the sequenced clones obtained from the size-fractionated gDNA library lacked a SSR, whereas 13% and 17% of the sequenced clones obtained from the BAC and enriched gDNA libraries, respectively, lacked a SSR. Primer sets were produced for 313 SSR loci. Two-hundred sixty-six (85%) of the loci were amplified and 165 (53%) of the loci were found to be polymorphic in a population composed of 18 diverse sorghum lines. (AG/TC)n and (AC/TG)n repeats comprised 91% of the dinucleotide SSRs and 52% of all of the SSRs at the polymorphic loci, whereas four types of repeats comprised 66% of the trinucleotide SSRs at the loci. Primer sequences are reported for the 165 polymorphic loci and for eight monomorphic loci that have a high degree of homology to genes. Also reported are the genetic map locations of 113 novel SSR loci (including four SSR-containing gene loci) and a linkage map composed of 147 SSR loci and 323 RFLP (restriction fragment length polymorphism) loci. The number of SSR loci per linkage group ranges from 8 to 30. The SSR loci are distributed relatively evenly throughout approximately 75% of the 1406-cM linkage map, but segments of five linkage groups comprising about 25% of the map either lack or contain few SSR loci. Mapping of SSR loci isolated from BAC clones located to these segments is likely to be the most efficient method for placing SSR loci in the segments.  相似文献   

18.
An SSR-based linkage map of Capsicum annuum   总被引:1,自引:0,他引:1  
There are five cultivated species of pepper, of which Capsicum annuum is the most widely cultivated as a vegetable or spice and the main experimental material of most pepper breeding programs. However, the number of simple sequence-repeat (SSR) markers known for C. annuum is limited. To develop SSR markers for Capsicum species, we constructed four SSR-enriched libraries from the genomic DNA of C.␣annuum, sequenced 1873 clones, and isolated 626 unique SSR clones. A higher percentage of these SSR markers were taken from dinucleotide motif libraries than from trinucleotide motif libraries. Primer pairs for the 626 SSR clones were synthesized and tested for polymorphisms; 594 amplified products were detected with the expected size. However, only 153 products were polymorphic between the parents of our mapping population. Using 106 highly reproducible pairs from the primer pairs, we constructed a linkage map of C. annuum in an intraspecific doubled haploid population (n=117) that contains nine previously reported SSRs as well as AFLP, CAPS, and RAPD markers and the trait of fruit pungency. The map contains 374 markers, including 106 new SSR markers distributed across all 13 linkage groups, and covers 1042 cM. The polymorphism information content (PIC) of these new SSR markers was calculated using 14 lines of Capsicum species. The average number of alleles per locus was 2.9 and the average PIC value was 0.46, even within C. annuum. The SSR markers developed in this study will be useful for mapping and marker-assisted selection in pepper breeding, and the linkage map provides a reference genetic map for Capsicum species.  相似文献   

19.
梨遗传连锁图谱的构建及其与苹果图谱的比较   总被引:1,自引:0,他引:1  
以‘丰水’为母本、‘砀山酥梨’为父本杂交所得的F1代104株单体为作图群体,利用SSR分子标记进行遗传连锁分析,应用Jionmap 3.0作图软件,构建了一张包含104个SSR分子标记,分属于18个连锁群的梨遗传连锁图谱,覆盖梨基因组总长831.8cM,平均图距为8.0cM。根据定位到该图谱上的SSR标记与苹果‘Fiesta’图谱进行比较,25个共有的SSR标记将该图谱和苹果图谱各连锁群连接起来,这些标记不仅呈现良好的共线性而且它们之间的相对遗传距离也很相近。研究认为,SSR标记作为锚定引物,可以与不同物种的遗传图谱相比较整合,为不同物种之间遗传信息的转移提供参考依据;同时该研究为梨树相关性状的基因定位、分离以及克隆奠定了基础。  相似文献   

20.
In this study, we describe the construction of an improved Chinese cabbage genetic linkage map by integrating simple sequence repeats (SSRs) and insertion/deletion polymorphisms (InDels) into a previously published map of a doubled haploid (DH) population. The population was derived from a cross between the Chinese cabbage line BY (Brassica rapa ssp. pekinensis) and a European turnip line MM (Brassica rapa L. ssp. rapifera). A total of 629 markers were aligned to ten linkage groups, with a total map length of 1,173.8 cM, and an average distance between markers of 1.87 cm. Of the 126 SSRs and 133 InDels mapped, 46 and 34 were novel, respectively. A comparison of the linkage map with the B. rapa genome showed that more than 93 % of the markers, including 112 SSRs and 129 InDels, could be anchored unambiguously to a specific location on one of the ten chromosomes. In most cases, the order of markers on the linkage map and physical map was similar; however, the majority of linkage groups contained a number of markers whose positions were either transposed or had moved slightly forwards or backwards. During microspore culture, it was observed that 11 SSRs and one InDel showed either variation in size, or the appearance of new marker bands in the DH lines. As a first step to addressing this SSR/InDel marker instability, six SSR and one InDel loci were sequenced, which revealed that the size variation was due mainly to changes in repeat-motif number or to the insertion/deletion of new fragments of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号