首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A study was made to investigate possible formation by the crustose coralline algaLithophyllum yessoenseof multiple allelopathic-related substances against the settlement and germination of spores of various seaweeds. Seven different solvents (n-hexane, diethyl ether, acetone, ethyl acetate, acetonitrile, methanol, distilled water) and seawater were used to obtain crude extracts and secretory exudates from the coralline alga. The extracts and the algal conditioned seawater were tested for inhibitory activity against the settlement and germination of spores from 17 species representing 15 genera. Spore settlement of 14 species was inhibited over 90% by one or more extracts of the six organic solvents and conditioned seawater. The germination of spores from 13 species was inhibited by one or more extracts of all seven solvents and conditioned seawater. The species where spore settlement was not significantly affected showed strong inhibition of germination, andvice versa.  相似文献   

2.
The sporopollenin of pollen exines of Ambrosia trifida is soluble in fused potassium hydroxide, in strong oxidizing solutions, and in certain organic bases. It is insoluble in other organic and inorganic acids and bases, in lipid solvents, and in detergents. The outer exine layer of gymnosperm and angiosperm pollen dissolves in 2-aminoethanol. The inner exine layer, as well as the exine of pteridophyte spores, is insoluble. The exine dissolution process in 2-aminoethanol involves swelling and disintegration of exine structures, leaving some residual globules. Sporopollenin shares some solubility properties with lignin and cutin but appears to be chemically distinct from these substances.  相似文献   

3.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

4.
Changes in hydrolytic enzyme activities were investigated during spore germination ofAdiantum capillus-veneris L. The spores were incubated for 3 days in the dark at 25 C for imbibition, and then germination of the spores was induced by continuous irradiation with red light. At day 2 after onset of the red light irradiation, rhizoids appeared out of spore coats and protonemal cells became visible on the following day. Lipase occurred in dry spores and its activity decreased during 3 days of dark incubation. The activity started to increase when the spore germination was induced by red light irradiation. On the other hand, amylolytic and aminopeptidase activities which were also detected in dry spores decreased continuously during the dark incubation and following the germination process. RNase activity also decreased during 3 days of dark incubation but the activity was retained thereafter at a constant level with or without red light irradiation. Developmental patterns of these hydrolytic enzymes were classified into two groups: One decreased during imbibition and dark incubation but increased after red light irradiation and the other continuously decreased during dark incubation and germination. These results are discussed in relation to compositional changes of cell constitutions such as lipid, sugars, proteins and amino acids during spore germination.  相似文献   

5.
Spore suspensions of 15 strains in 15 species of Micromonospora prepared with ultrasonication-technique were tested for resistance to moist heat, acid, alkali, and organic solvents (5 alcohols, 4 ketones and ether). More than 50% spore-survival was found in most organisms heated at 60°C for 20min, but less than 0.5% survived at 80°C. The spore-viability did not change at pH 6 to 8, but decreased beyond this range, and remarkably at acidic pH. A maximum reduction in viability was found with most organic solvents at a concentration of around 80%, and the spores were more resistant to ketone than alcohols and dioxane. Several Streptomyces species were also studied, and their spores were less resistant to heat and organic solvents than those of Micromonospora.  相似文献   

6.
Summary The level of inhibition of germination of spores added to cell-free culture filtrates of Fusarium oxysporum Schlecht. ex Fr. declines with time. This decline can be accounted for by the decreasing levels of volatile sporostatic factors and a stable vacuolation factor produced by F. oxysporum. After the disappearance of the volatile sporostatic factors, a stable principle is recognised in the culture filtrate by a persistent level of inhibition of spore germination which is not completely alleviated by the addition of nutrients. A stable inhibitor of spore germination has been isolated and characterised as nonanoic acid, and evidence is presented that this compound is widely produced among fungi and can inhibit the germination of spores of many fungal species. The contribution of nonanoic acid to sporostasis in cultures of F. oxysporum is assessed.  相似文献   

7.
The total dry mass of Fusarium roseum spores and contained lipid bodies were determined before and after spores germinated using quantitative interference microscopy. The mean for spore dry mass before germination was about 57 pg. Lipid bodies accounted for about 61% of that. Areas of lipid bodies in spores before and after germination were about 23 % but the contents of the lipid bodies accounted for only 10% of the spore dry mass after germination. The total dry mass of the spore and germ tube(s) greatly exceeded that of the spore before germination. We infer that nutrients for germ tube growth are derived from within the germinating spore and from the medium which must contain nutrients leached from non-germinating spores.  相似文献   

8.
Summary The dry mass of two-celled Diplodia maydis spores was measured both before and after germination by quantitative interference microscopy. The dry mass of spores declined approximately 50% during germination. However, the dry mass of germinating spores plus the dry mass of their germ tubes was greater than the dry mass of spores before germination. We conclude that the germinating spores absorbed nutrients released from non-germinating spores.The dry mass of fungal spores can be estimated by weighing large numbers of spores and determining the mean from sample spore counts. Mumford and Pappelis(4) determined the total dry mass of individual spores of Fusarium roseum and the contained lipid bodies before and after spores germinated using quantitative interference microscopy. The mean spore dry mass before germination was 57 pg. Lipid bodies accounted for about 61% of that mass and decreased as spores germinated. The total dry mass of the spore and germ tube 24 hr later greatly exceeded that of the spore before germination. Quantitative interference microscopy has been used to measure the dry mass of various types of cells. Kulfinski and Pappelis (3) recently reviewed how this technique has been applied to plant cells. Technical aspects of interference microscopy have been described by Ross (6).The purpose of this study was to examine the dry mass changes in Diplodia maydis (Berk.) Sacc. with and without germ tubes through the use of interference microscopy.  相似文献   

9.
James RR  Buckner JS 《Mycopathologia》2004,158(3):293-302
The alfalfa leafcutting bee (Megachile rotundata) is solitary and managed on a large scale for pollination of alfalfa seed crops. The bees nest in holes drilled in wood or polystyrene blocks, and their larvae are highly prone to a fungal disease called chalkbrood. The most prevalent form of chalkbrood is caused by Ascosphaera aggregata, but this ascomycete is difficult to culture. Hyphae will grow on standard fungal media, but spore germination is difficult to achieve and highly variable. We found that germination can be enhanced with oils. Lipids derived from plants and bee larvae increased germination from 50% (without oil) to 75–85% (with oil). Percent germination was significantly greater in the presence of lipids but germination was not significantly different when different oils, including mineral oil, were used. A. aggregata spores oriented along the oil--aqueous interface in the broth in a polar fashion, with swelling and germ tube formation always occurring into the aqueous portion of the broth. The other half of the spore tended to attach to a lipid droplet, where it remained, without swelling, during germ tube formation. The physical attachment of spores to the oil--aqueous interface is what most probably stimulates spore germination, as opposed to some nutritional stimulation. However, further research is needed to determine if and where the spores encounter such an interface when germinating in the host gut, where germination normally occurs.  相似文献   

10.
L-Alanine-initiated germination of Bacillus subtilis spores was inhibited by various kinds of hydrophobic compounds. Good correlation of inhibitory effect with hydrophobicity of the compound was demonstrated by using regression analysis in which the hydrophobic character was expressed by the partition coefficient in an octyl alcohol-water system. The correlation coefficient for 20 alcohols was 0.959, and that for 19 miscellaneous compounds was 0.906. Regression lines of the alcohols and other hydrophobic compounds were almost identical, showing that hydrophobic interaction played an important role in inhibition. Diphenylamine was one of the most effective inhibitors examined. n-Octyl, n-nonyl, and n-decyl alcohols were the most effective alcohols. The mode of inhibition by diphenylamine and n-octyl alcohol was a "mixed type" (competitive plus noncompetitive type) with respect to L-alanine; that by D-alanine was competitive inhibition. Sites for diphenylamine, n-octyl alcohol, and D-alanine may have overlapped. Inhibition was reversible by washing; heat resistance, stainability, and germination rate of the washed spores remained unaltered. Thus, we confirmed that the inhibition may occur before the initial trigger reaction of germination and that it may be due to the interaction between a hydrophobic compound and a hydrophobic region closely associated with the L-alanine receptor site on the spore.  相似文献   

11.
Aims: To determine effects of inner membrane lipid composition on Bacillus subtilis sporulation and spore properties. Methods and Results: The absence of genes encoding lipid biosynthetic enzymes had no effect on B. subtilis sporulation, although the expected lipids were absent from spores’ inner membrane. The rate of spore germination with nutrients was decreased c. 50% with mutants that lacked the major cardiolipin (CL) synthase and another enzyme for synthesis of a major phospholipid. Spores lacking the minor CL synthase or an enzyme essential for glycolipid synthesis exhibited 50–150% increases in rates of dodecylamine germination, while spores lacking enzymes for phosphatidylethanolamine (PE), phosphatidylserine (PS) and lysylphosphatidylglycerol (l‐PG) synthesis exhibited a 30–50% decrease. Spore sensitivity to H2O2 and tert‐butylhydroperoxide was increased 30–60% in the absence of the major CL synthase, but these spores’ sensitivity to NaOCl or Oxone? was unaffected. Spores of lipid synthesis mutants were less resistant to wet heat, with spores lacking enzymes for PE, PS or l‐PG synthesis exhibiting a two to threefold decrease and spores of other strains exhibiting a four to 10‐fold decrease. The decrease in spore wet heat resistance correlated with an increase in core water content. Conclusions: Changing the lipid composition of the B. subtilis inner membrane did not affect sporulation, although modest effects on spore germination and wet heat and oxidizing agent sensitivity were observed, especially when multiple lipids were absent. The increases in rates of dodecylamine germination were likely due to increased ability of this compound to interact with the spore’s inner membrane in the absence of some CL and glycolipids. The effects on spore wet heat sensitivity are likely indirect, because they were correlated with changes in core water content. Significance and Impact of the Study: The results of this study provide insight into roles of inner membrane lipids in spore properties.  相似文献   

12.
Early events during the germination of spores of the fern Onoclea sensibilis were studied to determine the time during germination when ethylene had its greatest inhibiting effect. Water imbibition by dry spores was rapid and did not appear to be inhibited by ethylene. During normal germination DNA synthesis occurred about four hours before the nucleus moved from a central position to the spore periphery. Following nuclear movement, mitosis and cell division occurred, partitioning the spore into a small rhizoid cell and a large protonemal cell. Cell division was complete approximately six hours after nuclear movement. Ethylene treatment of the spores blocked DNA synthesis, nuclear movement, and cell division. The earliest DNA replication in uninhibited spores was observed after 14 hours of germination, and the maximal rate of spore labeling with 3H-thymidine was between 16 and 20 hours. Spores were most sensitive to ethylene, however, during the stages of germination prior to DNA synthesis, and it was concluded that ethylene did not directly inhibit DNA replication but blocked germination at some earlier fundamental step. The effects of ethylene were reversible. since complete recovery from inhibition of germination was possible if ethylene was released and the spores were kept in light. Recovery was much slower in darkness. It was hypothesized that light acted photosynthetically to overcome the ethylene inhibition of germination. Consistent with this, it was shown that spores exhibit net photosynthesis after only two hours of germination.  相似文献   

13.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

14.
A procedure is described for germinating and staining rust teliospores on the slide. The spores are germinated on slides in a damp chamber, about 3 hours being required for the production of sporidia. The material is killed by inverting slides over osmic acid fumes for a few minutes. Germinated spores are then allowed to dry on the slide, thus becoming fixed to the slide in a gelatin produced by the breaking down of their own stalks during germination. No other fixative is required. Material must be thoroly dehydrated in the alcohols (one or more hours in each of the higher alcohols); returned to water; mordanted for 2-3 hours in 4% iron alum; stained for 2-3 hours in 0.5% aqueous solution of Heidenhain's hematoxylin; destained in 2% iron alum. The material is passed back thru the alcohols and mixtures of xylol and absolute alcohol (1:2, 1:1, 2:1) to xylol and mounted in balsam. The method is particularly satisfactory for the Gymnosporanghim rusts, which have telia very readily gelatinized. The details of germination are preserved intact, as in nature, and many details of nuclear division are excellent.  相似文献   

15.
In electron microscopic observation, neither wax nor cuticle was observed on the outermost layers of callus tissues. Chemical estimation of wax in the callus surface was attempted by thin-layer chromatography of solvent extracts of callus tissues in comparison with those of barley and rice leaves. Hydrocarbons and free alcohols were detected in lyophilized callus tissues, but no wax esters or ketones were detected. Germination test indicated that germination of spores of Aspergillus oryzae was less favored on hydrophobic membranes than that of spores of Alternaria sp. and Botrytis cinerea.

From these results, we inferred that the lack of cuticle and wax in the outermost layer of callus tissues facilitated spore germination and penetration, and A. oryzae, a saprophytic fungus, could also readily penetrate into callus tissues.  相似文献   

16.
Yan X  Gai Y  Liang L  Liu G  Tan H 《Archives of microbiology》2007,187(5):371-378
Alanine racemase is a major component of the exosporium of Bacillus cereus spores. A gene homologous to that of alanine racemase (alrA) was cloned from Bacillus thuringiensis subsp. kurstaki, and RT-PCR showed that alrA was transcribed only in the sporulating cells. Disruption of alrA did not affect the growth and sporulation of B. thuringiensis, but promoted l-alanine-induced spore germination. When the spore germination rate was measured by monitoring DPA release, complementation of the alrA disruptant reduced the rate of l-alanine-induced spore germination below that of even wild-type spores. As previously reported for spores of other Bacillus species, d-alanine was an effective and competitive inhibitor of l-alanine-induced germination of B. thuringiensis spores. d-cycloserine alone stimulated inosine-induced germination of B. thuringiensis spores in addition to increasing l-alanine-induced germination by inhibiting alanine racemase. d-Alanine also increased the rate of inosine-induced germination of wild-type spores. However, d-alanine inhibited inosine-induced germination of the alrA disruptant spores. It is possible that AlrA converted d-alanine to l-alanine, and this in turn, stimulated spore germination in B. thuringiensis. These results suggest that alrA plays a crucial role in moderating the germination rate of B. thuringiensis spores.  相似文献   

17.
Nerve ending fractions from guinea-pig cerebral cortex contained more than one-half of the Na-K ATPase activity present in the original homogenate. Ethanol at concentrations ranging from 0·043 to 2·57 m inhibited the Na-K ATPase to a significantly greater extent than the Mg-activated ATPase or AChE. The inhibition of membrane-bound Na-K ATPase by ethanol was of the non-competetive type and the activity of Na-K ATPase was increasingly inhibited by alcohols of increasingly longer chain length. The ability of various alcohols to inhibit membrane-bound Na-K ATPase activity was correlated with their lipid solubility.  相似文献   

18.
The effect of potassium ion on L-alanine-inosine-induced germination of unactivated spores of Bacillus cereus T was studied. Unactivated spores germinated in 0.1 M sodium phosphate buffer (NaPB), but not 0.1 M potassium phosphate buffer (KPB), at pH 8.0 and at 30 C. Inhibition of germination was also observed on incubation of unactivated spores in NaPB containing potassium chloride. Previously it was demonstrated that germination of unactivated spores involves at least two steps, one induced by L-alanine, and the other by inosine. Potassium ion seems to inhibit the response of the spores to inosine, because: (1) Spores that had been preincubated with L-alanine in NaPB or KPB, germinated in NaPB but not KPB in the presence of inosine. (2) During germination in NaPB, incorporation of L-[14C]alanine showed bimodal kinetics with a rapid first phase and a second continuous phase, but in KPB the second phase of incorporation did not occur. The events occurring before germination of unactivated spores are discussed with reference to the initiation of germination.  相似文献   

19.
Most macroalgal species along the Western Antarctic Peninsula (WAP) are defended against predation, many using chemical defenses. These subtidal communities are also mostly devoid of free living filamentous algae. However, one endo/epiphyte, Elachista antarctica, is found growing exclusively out of the palatable rhodophyte Palmaria decipiens. To understand this unusual and exclusive epiphytization, we tested whether macroalgal secondary metabolites such as those responsible for deterring sympatric grazers, affect the behaviors of the epiphyte's spores. Settlement, germination, and swimming behaviors of the epiphyte's motile spores were quantified in the presence of fractionated lipophilic and hydrophilic extracts of host P. decipiens and other rhodophytes from the shallow subtidal. Host P. decipiens was the only alga tested that did not inhibit spore settlement or germination. We also examined whether extracts from these chemically rich algae affect spore swimming behaviors and found spores to be chemotactically attracted to seawater soluble extract fractions of host P. decipiens. These results indicate that chemosensory behaviors of the epiphyte's spores to metabolites associated with these chemically defended macrophytes can explain this exclusive epiphyte–host interaction.  相似文献   

20.
Summary The effects of a number of organic compounds on the germination of spores of Agaricus bisporus (J. Lange) Pilat has been investigated and a preliminary analysis of spore lipids carried out. Germination was stimulated by isocaproic acid but not by straight-chain C5 to C11 fatty acids or by the amino acids leucine and iso-leucine. Cholesterol at a concentration of 1 ppm was inhibitory. The lipid reserve of the spore comprised mono-, di- and tri-glycerides, free fatty acids and sterols. The phospholipid fraction was unusually small and contained a lecithin and cephalin fraction, phosphatidylinositol and cardiolipin phosphatidic acid; phosphatidylcholine being the most prominent component. The role of lipids and various germination stimulants in the physiology of A. bisporus spores is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号