首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

2.
Stem tissue of Lycopodium lucidulum Michx. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Although their protoplasts contain similar components, immature sieve elements can be distinguished from parenchymatous elements of the phloem at an early stage by their thick walls and correspondingly high population of dictyosomes and dictyosome vesicles. Late in maturation the sieve-element walls undergo a reduction in thickness, apparently due to an “erosion” or hydrolysis of wall material. At maturity, the plasmalemma-lined sieve elements contain plastids with a system of much convoluted inner membranes, mitochondria, and remnants of nuclei. Although the endoplasmic reticulum (ER) in most mature sieve elements was vesiculate, in the better preserved ones the ER formed a tubular network closely appressed to the plasmalemma. The sieve elements lack refractive spherules and P-protein. The protoplasts of contiguous sieve elements are connected with one another by pores of variable diameter, aggregated in sieve areas. As there is no consistent difference between pore size in end and lateral walls these elements are considered as sieve cells.  相似文献   

3.
Summary The minor veins ofCucurbita pepo leaves were examined as part of a continuing study of leaf development and phloem transport in this species. The minor veins are bicollateral along their entire length. Mature sieve elements are enucleate and lack ribosomes. There is no tonoplast. The sieve elements, which are joined to each other by sieve plates, contain mitochondria, plastids and endoplasmic reticulum as well as fibrillar and tubular (190–195 diameter) P-protein. Fibrillar P-protein is dispersed in mature abaxial sieve elements but remains aggregated as discrete bodies in mature adaxial sieve elements. In both abaxial and adaxial mature sieve elements tubular P-protein remains undispersed. Sieve pores in abaxial sieve elements are narrow, lined with callose and are filled with P-protein. In adaxial sieve elements they are wide, contain little callose and are unobstructed. The intermediary cells (companion cells) of the abaxial phloem are large and dwarf the diminutive sieve elements. Intermediary cells are densely filled with ribosomes and contain numerous small vacuoles and many mitochondria which lie close to the plasmalemma. An unusually large number of plasmodesmata traverse the common wall between intermediary cells and bundle sheath cells suggesting that the pathway for the transport of photosynthate from the mesophyll to the sieve elements is at least partially symplastic. Adaxial companion cells are of approximately the same diameter as the adaxial sieve elements. They are densely packed with ribosomes and have a large central vacuole. They are not conspicuously connected by plasmodesmata to the bundle sheath.  相似文献   

4.
Summary P-protein and the changes it undergoes after wounding of sieve tubes of secondary phloem in one- to two-year old shoots ofHevea brasiliensis has been studied using electron microscopy. The P-protein in the form of tubules with a diameter of 8–9 nm and a lumen of 2–2.5 nm occurred in differentiating sieve elements and appeared as compact bodies which consisted of small aggregates of the tubules. As the sieve elements matured, these P-protein bodies dispersed with a disaggregation of the tubules before they turned into striated fibrils, 10–11 nm in diameter. In wounding experiments, as the mature sieve elements collapsed after cutting, their striated P-protein converted into tubules. These tubules were the same in ultrastructure as the tubules in differentiating sieve elements and they often were arranged in crystalline aggregates.  相似文献   

5.
The conducting elements of phloem in angiosperms are a complex of two cell types, sieve elements and companion cells, that form a single developmental and functional unit. During ontogeny of the sieve element/companion cell complex, specific proteins accumulate forming unique structures within sieve elements. Synthesis of these proteins coincides with vascular development and was studied in Cucurbita seedlings by following accumulation of the phloem lectin (PP2) and its mRNA by RNA blot analysis, enzyme-linked immunosorbent assay, immunocytochemistry and in␣situ hybridization. Genes encoding PP2 were developmentally regulated during vascular differentiation in hypocotyls of Cucurbita maxima Duch. Accumulation of PP2 mRNA and protein paralleled one another during hypocotyl elongation, after which mRNA levels decreased, while the protein appeared to be stable. Both PP2 and its mRNA were initially detected during metaphloem differentiation. However, PP2 mRNA was detected in companion cells of both bundle and extrafascicular phloem, but never in differentiating sieve elements. At later stages of development, PP2 mRNA was most often observed in extrafascicular phloem. In developing stems of Cucurbita moschata L., PP2 was immunolocalized in companion cells but not to filamentous phloem protein (P-protein) bodies that characterize immature sieve elements of bundle phloem. In contrast, PP2 was immunolocalized to persistent ␣ P-protein bodies in sieve elements of the extrafascicular phloem. Immunolocalization of PP2 in mature wound sieve elements was similar to that in bundle phloem. It appears that PP2 is synthesized in companion cells, then transported into differentiated sieve elements where it is a component of P-protein filaments in bundle phloem and persistent P-protein bodies in extrafascicular phloem. This differential accumulation in bundle and extrafascicular elements may result from different functional roles of the two types of phloem. Received: 31 July 1996 / Accepted: 27 August 1996  相似文献   

6.
Electron microscopical investigations of primary haustoria of Orobanche crenata parasitizing the roots of the highly compatible host, Vicia narbonensis, reveal an uninterrupted phloem system connecting both partners. Individual sieve elements belonging to the host and parasite could be identified by the cell markers: plastids, mitochondria and P-protein, which in the present system turned out to have species-specific fine structure. Sieve pores of normal structure interconnect the sieve elements of host and parasite. They originate from interspecific plasmodesmata.  相似文献   

7.
An ontogenetic study of the sieve element protoplast of Nicotiana tabacum L. by light and electron microscopy has shown that the P-protein component (slime) arises as small groups of tubules in the cytoplasm. These subsequently enlarge to form comparatively large compact masses of 231 ± 2.5 (SE)A (n = 121) tubules, the P-protein bodies. During subsequent differentiation of the sieve element, the P-protein body disaggregates and the tubules become dispersed throughout the cell. This disaggregation occurs at about the same stage of differentiation of the sieve elements as the breakdown of the tonoplast and nucleus. Later, the tubules of P-protein are reorganized into smaller striated 149 ± 4.5 (SE)A (n = 43) fibrils which are characteristic of the mature sieve elements. The tubular P-protein component has been designated P1-protein and the striated fibrillar component P2-protein. In fixed material, the sieve-plate pores of mature sieve elements are filled with proteinaceous material which frays out into the cytoplasm as striated fibrils of P2-protein. Our observations are compatible with the view that the contents of contiguous mature sieve elements, including the P-protein, are continuous through the sieve-plate pores and that fixing solutions denature the proteins in the pores. They are converted into the electron-opaque material filling the pores.  相似文献   

8.
Summary During advanced stages of sieve-element differentiation inUlmus americana L., dispersal of the P-protein (slime) bodies results in formation of a peripheral network of strands consisting of aggregates of P-protein components having a striated, fibrillar appearance. The tonoplast is present throughout the period of P-protein body dispersal. Perforation of the sieve plates is initiated during early stages of P-protein body dispersal.Small P-protein bodies consist of tubular components, most of which measure about 180 Å in diameter. With increase in size of the P-protein bodies narrower components appear. At the time of initiation of P-protein body dispersal, most of the components comprising the bodies are of relatively narrow diameters (most 130–140 Å) and have a striated, fibrillar appearance. Both wide and narrow P-protein components are present throughout the period of sieve-element differentiation and in the mature cell as well, and a complete intergradation in size and appearance exists between the two extremes. Both extremes of P-protein component have a similar substructure: an electron-transparent lumen and an electronopaque wall composed of subunits, apparently in helical arrangement. The distribution of P protein in mature sieve elements was quite variable.The parietal layer of cytoplasm in matureUlmus sieve elements consists of plasmalemma, endoplasmic reticulum cisternae in two forms (as a complex network closely applied to the plasmalemma and in stacks along the wall), mitochondria, and plastids.  相似文献   

9.
Developing sieve elements of pennycress (Thlaspi arvense L.) were studied with the electron microscope. The maturation of sieve elements involved loss of ribosomes from cytoplasm; degeneration of nulcei; modification of endoplasmic reticulum (ER); loss of tonoplast; and disappearance of dictyosomes and dictyosomes vesicles, coated vesicles, microtubules, and microbodies. Such changes produce a mature, presumably conducting cell that contains no nucleus or central vacuole but which retains a thin layer of peripheral cytoplasm with plastids, mitochondria, and smooth ER. Some similar changes have been described in a variety of developing sieve elements of angiosperms, but coated vesicles and microbodies previously have not been followed through sieve-element maturation. Likewise, few developmental studies have been made of plant sieve elements that exhibit two types of P-protein, the tubular type and the granular P-protein body.  相似文献   

10.
During maturation of sieve elements in Cucurbita maxima Duchesne, the P-protein bodies (slime bodies) usually disperse in the tonoplast-free cell. In some sieve elements the P-protein bodies fail to disperse. The occurrence of dispersal or nondispersal of P-protein bodies can be related to the position of the sieve elements in the stem or petiole. In the sieve elements within the vascular bundle the bodies normally disperse; in the extrafascicular sieve elements the bodies often fail to disperse. Extrafascicular sieve elements showing partial dispersal also occur. The appearance of the sieve plate in fixed material is related to the degree of dispersal or nondispersal of the P-protein bodies. In sieve elements in which complete dispersal occurs the sieve plate usually has a substantial deposit of callose, and the sieve-plate pores are filled with P protein. In sieve elements containing nondispersing P-protein bodies the sieve plate bears little or no callose, and its pores usually are essentially "open." The dispersed P-protein components may aggregate into loosely organized "strands," which sometimes extend vertically through the cell and continue through the sieve-plate pores; but they may be oriented otherwise in the cell, even transversely.  相似文献   

11.
Summary The extent of blocking of sieve-plate pores caused by release of cell turgor was investigated by fixing and processing for electron microscopy a long length of celery (Apium graveolens L.) phloem. Differences in distribution of P-protein within the pores were observed between those cells near the two cut ends, and the central cells.To assess the effect of chemical fixation on the distribution of P-protein, strands of celery phloem (fixed or unfixed, and not treated with cryoprotectants) were frozen in Freon 12 and then freeze-substituted. In sieve elements from unfixed tissue there were a greater number of sieve plates displaying partially open pores.Direct freezing of unprotected phloem tissue in Freon 12 resulted in the formation of ice crystals within the lumen of the sieve elements. Freezing of tissue at rates fast enough to avoid the formation of damaging ice crystals resulted in sieve-plate pores having an unoccluded central channel with a peripheral lining of P-protein. In the lumen of the sieve elements the P-protein filaments occurred as discrete bundles ca. 0.5 m in diameter, and as a parietal layer varying in thickness from 0.1 to 0.5 m.  相似文献   

12.
P-protein, a filamentous protein found in the sieve elements of most angiosperms, is believed to function in the sealing of phloem wound sites. We report here on the use of a highly sensitive immunomicroscopy assay to study the ability of P-protein specific monoclonal antibodies RS21, RS22, and RS23, made against the P-protein from Streptanthus tortuosus (Brassicaceae), to recognize the native P-protein in a number of different plant genera. RS21, RS22, and RS23 all recognized the P-protein in other genera within the Brassicaceae including Arabidopsis and in the closely related family, Capparaceae. RS21 and RS22 also were able to bind to the P-protein in plants more distantly related to S. tortuosus. The labeling of P-protein was also observed in the monocots Iris and Narcissus probed with RS21. No label was seen with members of the Poaceae that are reported to lack P-protein. None of the monoclonal antibodies was able to bind to the P-protein in members of the Cucurbitaceae.  相似文献   

13.

Background  

The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae.  相似文献   

14.
Antibodies were raised against lectin purified from the sieve-tube exudate of Cucurbita maxima. Immunocytochemistry, using peroxidase-labelled antibodies and Protein A-colloidal gold, was employed to determine the location of the lectin within the tissues and cells of C. maxima and other cucurbit species. The anti-lectin antibodies bound to P-protein aggregates in sieve elements and companion cells, predominantly in the extrafascicular phloem of C. maxima. This may reflect the low rate of translocation in these cells. Under the electron microscope, the lectin was shown to be a component of P-protein filaments and was also found in association with the sieve-tube reticulum which lines the plasmalemma. The anti-lectin antibodies reacted with sieve-tube proteins from other species of the genus Cucurbita but showed only limited reaction with other genera. We suggest that the lectin serves to anchor P-protein filaments and associated proteins to the parietal layer of sieve elements.Abbreviation SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
R. E. Williamson 《Planta》1972,106(2):149-157
Summary Experiments are reported which were designed to test the hypothesis that the movement of the translocation stream is driven by the contractile activity of P-protein filaments. The different types of filament found after negative staining of phloem exudates from Ricinus communis and Cucurbita pepo are described. An approximate model is proposed for the quaternary structure of a 20 nm component in the R. communis exudate. None of the filaments showed any ability to bind heavy meromyosin subfragment one. In experiments with cytochalasin B, no evidence of effects on the movement of 14C-assimilates or on the ultrastructure of the sieve elements of Lepidium sativum was found. It is concluded that the available evidence is unfavourable to the view that P-protein resembles known contractile proteins elsewhere.  相似文献   

16.
Summary The sieve-plate pores of sieve elements in leaf veins of Hordeum vulgare, fixed in glutaraldehyde with postfixation in osmium tetroxide, were lined by the plasmalemma and variable amounts of callose. All pores were filled with endoplasmic reticulum, which was continuous from cell to cell. Mature sieve elements lacked P-protein.  相似文献   

17.
Immature sieve elements of pennycress (Thlaspi arvense, Brassicaceae) were studied with the electron microscope in connection with studies on virus-infected plants. Immature sieve elements contained cytoplasm rich in organelles and other components: endoplasmic reticulum, dictyosomes and associated smooth and coated vesicles, mitochondria, plastids, ribosomes, microtubules, microfilaments, vacuoles, and nuclei that were sometimes lobed. Tubular P-protein (phloem protein) and one to three granular P-protein bodies also were present in the cytoplasm. Coated vesicles may be involved in formation of the granular P-protein body and in some aspect of cell wall development, for in the latter case, they were often seen united with the plasmalemma. The association of coated vesicles with the P-protein body is discussed with reference to proposed concepts of the origin and function of these vesicles.  相似文献   

18.
Katherine Esau 《Protoplasma》1971,73(2):225-238
Summary The P-protein in sieve elements of leaves ofMimosa pudica L. is first discernible as fine fibrous material which forms homogeneous aggregates. Ribosomes, rough endoplasmic reticulum, and dictyosomes with associated vesicles occur in the cytoplasm surrounding the aggregates. The plastids and mitochondria are in a parietal position in the parts of the cell where the nascent P-protein accumulates. In a later stage, the fibrillar material is organized into a three-dimensional system of five- and six-sided elongated compartments. The corners of the compartments appear solid at first, then they become electron lucent in the center and assume tubular form. Aggregates of mature P-protein tubules usually occur near the compartmentalized system. Tubules in pentagonal or hexagonal arrangements may be present in the aggregates and may be partly interconnected. The conclusion was drawn that the P-protein tubules are assembled at the corners of compartments within a continuous orderly system. The fully formed tubules occur first in aggregates, the P-protein bodies. Later the aggregates become loose and partly dispersed. Many of the dispersed tubules assume a loose, extended, helical form characteristic of P-protein in older sieve elements.This work was supported in part by National Science Foundation grant GB-5506. I am also grateful to MissHatsume Kosakai and Mr.Robert H.Gill for technical assistance.  相似文献   

19.
The physiological phloem equivalents, leptoids, of the polytrichaceous moss Atrichum undulatum appear to be similar to the nacreous sieve elements that occur in many higher plants. These leptoids are elongated cells with nacreous thickenings on their radial and tangential walls. Their oblique end walls, which lack such thickenings, are traversed by numerous pores through which the plasmalemma, endoplasmic reticulum, and cytoplasm are continuous between adjacent leptoids of a longitudinal file. These end walls closely resemble the simple sieve areas of the sieve elements found in Polypodium vulgare. The leptoid sieve pores have a median expanded area and frequently are occluded by small amorphous protein plugs at each end. Also, callose was observed as electron-luscent areas both on the faces of the end walls and as a thin cylinder surrounding the lateral area of each pore. Amorphous and granular cytoplasmic contents of the leptoids appear to be morphologically similar to the slime (P-protein) found in the sieve-tube elements of many angiosperms. Differentiating leptoids are characterized by the formation of numerous membrane-bound protein bodies in close association with polysomes and endoplasmic reticulum. As the leptoid matures, the contents of the protein bodies become dispersed in the cytoplasm. Ultrastructurally and ontogenetically the leptoids in the gametophores of A. undulatum appear almost identical to the sieve elements of P. vulgare and therefore should be considered sieve elements rather than phloem-like equivalents.  相似文献   

20.
Summary The distribution of adenosine triphosphatase (ATPase) activity in the phloem of petioles and minor veins of Cucurbita maxima has been studied using a lead phosphate precipitation procedure. ATPase activity was localized in sieve elements, companion cells and parenchyma cells. Activity was found at the cell surfaces, associated with the dispersed P-protein of mature sieve elements, in mitochondria, sieve-element reticulum, and at specific regions of the cell walls. It is suggested that the ATPase at the phloem cell surfaces may function in intercellular transport of assimilates or ions, and that the ATPase activity associated with the P-protein may function in the translocation process or in callose deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号