首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water extracts of fresh leaves, buds, and leaf litter of Populus balsamifera (balsam poplar) were tested at different dilutions for allelopathic effects on nodulation, nitrogenase activity and growth of nodulated green alder (Alnus crispa) seedlings, and on growth of unnodulated green alder seedlings. All extracts inhibited height growth, root elongation and dry weight increment of nodulated and unnodulated green alder seedlings to some degree during a 2-month experiment. Foliar nitrogen content of both nodulated and unnodulated seedlings was significantly lower in extract treated plants than in controls. Growth inhibition was about 25% less in nodulated than in unnodulated seedlings. The number of nodules per plant in seedlings treated with any balsam poplar extract was only 51% that of control plants. Acetylene reduction by seedlings treated with bud and leaf litter extracts indicated a decrease of 62% compared to controls. Growth inhibition was not mediated by pH or osmotic effects of the extracts. The possible ecological significance is discussed.  相似文献   

2.
Beginning in the early 1990s, the balsam fir sawfly (Neodiprion abietis) became a significant defoliating insect of precommercially thinned balsam fir (Abies balsamea (L.) Mill.) stands in western Newfoundland, Canada. In 1997, a nucleopolyhedrovirus (NeabNPV) was isolated from the balsam fir sawfly and, as no control measures were then available, NeabNPV was developed for the biological control of balsam fir sawfly. In order to register NeabNPV for operational use under the Canadian Pest Control Products Act, research was carried out in a number of areas including NeabNPV field efficacy, non-target organism toxicology, balsam fir sawfly ecology and impact on balsam fir trees, and NeabNPV genome sequencing and analysis. As part of the field efficacy trials, approximately 22 500 hectares of balsam fir sawfly-infested forest were aerially treated with NeabNPV between 2000 and 2005. NeabNPV was found to be safe, efficacious, and economical for the suppression of balsam fir sawfly outbreak populations. Conditional registration for the NeabNPV-based product, Abietiv™, was received from the Pest Management Regulatory Agency (Health Canada) in April 2006. In July 2006, Abietiv was applied by spray airplanes to 15 000 ha of balsam fir sawfly-infested forest in western Newfoundland in an operational control program.   相似文献   

3.
It has been found that heterotrophic nitrification by Thiosphaera pantotropha can be inhibited by thiosulphate in batch and chemostat cultures. Allythiourea and nitrapyrin, both classically considered to be specific inhibitors of autotrophic nitrification, inhibited nitrification by Tsa. pantotropha in short-term experiments with resting cell suspensions. Hydroxylamine inhibited ammonia oxidation in chemostat cultures, but was itself fully oxidized. Thus the total nitrification rate for the culture remained the same.Heterotrophic nitrification by another organism, a strain of Pseudomonas denitrificans has also been shown to be inhibited by thiosulphate in short term experiments and in the chemostat. During these experiments it became evident that this strain is able to grow mixotrophically (with acetate) and autotrophically in a chemostat with thiosulphate as the energy source.  相似文献   

4.
The balsam woolly adelgid (Adelges piceae) is a gout-inducing hemipteran native to the silver fir forests of Europe. Introduced to eastern North America approximately 100 years ago, it is now found in most balsam fir forests in Atlantic Canada. When A. piceae feed, they trigger a reaction in the host branch that alters both xylem and phloem morphology. We conducted a field survey to examine the relationship between A. piceae gout density and balsam fir foliar chemistry and shoot growth in naturally unthinned and precommercially thinned stands. A. piceae gout density negatively affected branch growth and was related to changes in the chemistry of older, but not current-year foliage. Older foliage experienced decreases in camphene and bornyl acetate, while foliar concentrations of camphene, myrcene, phenolics, potassium and water differed between thinned and unthinned stands. Foliar chemistry was also influenced by interactions between thinning and A. piceae gout density in old foliage. This study suggests that changes in balsam fir associated with A. piceae gout density may force native defoliators that feed in highly gouted trees to adapt to diets of different chemical compositions and that thinning may alter these interactions.  相似文献   

5.
The vegetation mosaic of the Alaskan taiga is produced by patterns of disturbance coupled to well-defined successional patterns. In primary succession on river floodplains, one of the critical transitions in succession is that from thinleaf alder (Alnus tenuifolia) to balsam poplar (Populus balsamifera). This is the shift from a N2-fixing shrub to a deciduous tree. Through this transition there are major changes in N cycling including a decrease in N2-fixation, mineralization, and nitrification. Most models of plant effects on soil processes assume that these changes are caused by shifts in litter quality and C/N ratio. This paper reviews several studies examining the effects of balsam poplar secondary chemicals on soil nutrient cycling. Balsam poplar tannins inhibited both N2-fixation in alder, and decomposition and N-mineralization in alder soils. Other poplar compounds, including low-molecular-weight phenolics, were microbial substrates and increased microbial growth and immobilization, thereby reducing net soil N availability. Thus, substantial changes in soil N cycling through succession appear to have been mediated by balsam poplar secondary chemicals.  相似文献   

6.
We grew seedlings of two co-occurring high elevation tree species in controlled light and nitrogen (N) environments to examine the effect on foliar N and P concentrations and the resulting correlation with photosynthesis and growth. Foliar N concentrations in both heart-leaf paper birch (Betula cordifolia) and balsam fir (Abies balsamea) seedlings were greater in low light treatments than in high light treatments. P concentrations, however, were lower in birch and fir foliage grown in low light than in high light. N-availability had no effect on foliar N in birch but tended to increase N concentration in fir needles at all but 100% ambient light. N-availability had no effect on P concentration in fir seedlings, but high N decreased foliar P in birch. There was a positive relationship between foliar N-concentration (mg g–1) and mass-based maximum photosynthetic rate (Asat) in birch seedlings and a corresponding growth response to increased N-availability (suggesting N-limitation). Fir photosynthesis exhibited a positive correlation up to 22 mg g–1 – N and a negative correlation above that point, suggesting that high N concentrations may be detrimental to photosynthesis in the fir seedlings. There was no significant effect of N-treatment on growth.  相似文献   

7.
Nitrite accumulation can be undesirable in nitrifying reactors used for the biological elimination of nitrogen from wastewaters because the ammonium oxidation process was seen to be inhibited. There is a need to better understand the effects of nitrite on both ammonium and nitrite oxidizing processes. In this paper, the effect of nitrite on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. At 25 mg N/l of added nitrite, nitrification was successfully carried out. Addition of higher nitrite concentrations to nitrifying cultures (100 and 200 mg N/l) provoked inhibitory effects on the nitrification respiratory process. Nitrite at 100 and 200 mg N/l induced a significant decrease in the values for nitrate yield (−20% and −34%, respectively) and specific rate of nitrate formation (−26% and −67%, respectively), while the ammonium consumption efficiency kept high and the specific rate of ammonium oxidation did not significantly change. This showed that the nitrite oxidizing process was more sensitive to the presence of nitrite than the ammonium oxidizing process. These results showed that as a consequence of nitrite accumulation in nitrification systems, the activity of the nitrite oxidizing bacteria could be more inhibited than that of the ammonium oxidizing bacteria, provoking a higher accumulation of nitrite in the medium.  相似文献   

8.
Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean’s surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L−1 d−1) to those in well-lit layers (<1 nmol L−1 d−1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.  相似文献   

9.
Summary During July 1988 rooted and non-rooted experimental chambers were established in a Norway spruce (Picea abies. Karst) stand in south Devon U.K. Replicates were supplemented with ammonium and nitrate. The leachates were analysed to monitor the release of mineral-N species and cations over the 17-week experimental period. Ammonium treatments leached 300% more calcium and magnesium than controls. The onset of nitrification resulted in a decrease in sodium losses from ammonium treatments reflecting a decrease in the exchanging capacity of the soil solution. These results are discussed in relation to mineral ion leaching in soils subjected to increesed N-loading, and the ability of soils to buffer these perturbations.  相似文献   

10.
Abstract 1 Efficacy of commercial formulations of Bacillus thuringiensis ssp. kurstaki (Btk) against spruce budworm Choristoneura fumiferana was investigated in mixed balsam fir‐white spruce stands. Btk treatments were scheduled to coincide with early flaring of balsam fir shoots, and later with flaring of white spruce shoots. Btk efficacy on the two host trees was compared and examined according to the foliar content of nutrients and allelochemicals and the insect developmental stage at the time of spray. 2 Larvae fed white spruce foliage were less vulnerable to Btk ingestion than larvae fed balsam fir foliage. Higher larval survival on white spruce, observed 10 days after spray, was related to higher foliage content in tannins and a lower N/tannins ratio, which might have induced inactivation of Btk toxins. 3 Larval mortality due to Btk did not depend on spruce budworm larval age. 4 Foliage protection of both host trees was similar in plots treated with Btk: larval mortality due to Btk treatment reduced insect grazing pressure on balsam fir trees; meanwhile, suitability of white spruce foliage seemed to decrease very rapidly, which induced high larval mortality among spruce budworm fed on white spruce trees. Nevertheless, following Btk sprays, 50% more foliage remained on white spruce than on balsam fir trees, because of the higher white spruce foliage production. 5 Both spray timings achieved similar protection of white spruce trees, but Btk treatments had to be applied as early as possible (i.e. during the flaring of balsam fir shoots to optimally protect balsam fir trees in mixed balsam fir‐white spruce stands).  相似文献   

11.
An electrophysiological study of the sensilla styloconica of the galea in Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae) larvae showed a differential response between fourth- and sixth-instars to extracts of balsam fir foliage. Larvae raised on artificial diet were stimulated with the water soluble fraction of needle extracts obtained from terminal and lateral shoots of 30- and 70-yr-old balsam fir trees. An extract-sensitive neuron was found in the lateral styloconic sensillum of both instars. The lateral styloconica in the fourth-instar larvae were more sensitive to extracts from terminal than from lateral shoot foliage of both young and old trees. The lateral styloconica of sixth-instar larvae were more sensitive to lateral shoot foliage of old trees. Results are discussed with respect to their relationship to feeding preferences and feeding rates observed in a previous behavioural study.  相似文献   

12.
d-Serine (0.05m) inhibited nitrification byAspergillus flavus in media containing either peptone, aspartate,a-alanine or -alanine as the sole nitrogen source. A similar inhibition was observed in an aspartate + peptone medium, but nitrate was formed in a -alanine + peptone medium in the presence of the inhibitor. Exceptionally high yields of nitrate were obtained in the -alanine + peptone medium. In replacement cultures,d-serine inhibited nitrification of aspartate but not of -alanine. Manometric studies indicated that aspartate was decarboxylated byA. flavus and that the reaction was inhibited byd-serine. In view of these results, it is suggested that aspartate is a precursor and -alanine is an intermediate in nitrification by this fungus.  相似文献   

13.
Siemens JA  Zwiazek JJ 《Mycorrhiza》2008,18(8):393-401
The effects of an E-strain fungus (Wilcoxina mikolae var. mikolae) and an ectomycorrhizal fungus (Hebeloma crustuliniforme) on growth and water relations of balsam poplar were examined and compared in the present study. Balsam poplar roots inoculated with W. mikolae var. mikolae (Wm) exhibited structures consistent with ectendomycorrhizal (EEM) associations, including a mantle surrounding the outside of the root and an extensive Hartig net that was located between cortical cells and extended to the vascular cylinder. Roots colonized with H. crustuliniforme (Hc) developed a mantle layer, indicative of an ectomycorrhizal (ECM) association, around the outer part of the root, but no distinct Hartig net was present. Wm-colonized balsam poplar also showed increased shoot growth, stomatal conductance (g s), and root volumes compared with non-inoculated and Hc-inoculated plants. However, Hc-inoculated plants had higher root hydraulic conductivity (L pr) compared with non-inoculated plants and Wm-inoculated plants. These results suggest that L pr was not a growth-limiting factor in balsam poplar and that hyphal penetration of the root cortex in itself may have little influence on root hydraulic properties.  相似文献   

14.
Control of Nitrification by Tree Species in a Common-Garden Experiment   总被引:1,自引:0,他引:1  
We studied the effect of tree species on nitrification in five young plantations and an old native beech coppice forest at the Breuil experimental site in central France. The potential net nitrification (PNN) of soil was high in beech, Corsican pine, and Douglas fir plantations (high nitrifying stands denoted H) and low in spruce and Nordmann fir plantations as well as in native forest stands (low nitrifying stands denoted L). We hypothesized that tree species would stimulate or inhibit nitrification in transplanted soil cores within a few years after the cores were transplanted between stands. We first initiated a transplant experiment where soil cores were exchanged between all stands. The PNN remained high in soil cores from H transferred to H and low in soil cores from L transferred to L. The PNN increased considerably after 16 months in soil cores transferred from L to H, whereas the transfer of soil cores from H to L decreased the PNN only slightly after 28 months. In a second transplant experiment, forest floor material was exchanged between the Douglas fir (H) and the native forest (L) stand. Six months later, the forest floor from the native forest had increased the PNN of the Douglas fir soil considerably, whereas the forest floor from Douglas fir did not affect the PNN of the soil in the native forest stand. It was concluded that beech, Corsican pine, and Douglas fir rapidly stimulate soil nitrification by either activation of suppressed nitrifier communities and/or colonization by new nitrifier communities. Conversely, the slow and irregular reduction of nitrification in spruce, Nordmann fir, and native forest was probably due to the low and heterogeneously distributed flux of inhibiting substances per volume of soil. Our experiments suggest that the inhibition of nitrification is not tightly connected to forest floor leachates, but that the forest floor both reflects and maintains the major ongoing processes. In the long term, humus build up and the production of inhibiting substances may completely block the nitrification activity.  相似文献   

15.
Response of conifer seedlings to nitrate and ammonium sources of nitrogen   总被引:3,自引:0,他引:3  
Summary Differences in growth responses of Douglas fir, western hemlock, Sitka spruce, and white spruce to nitrate and ammonium N sources were examined in sand culture and artificial soil culture. Effects of the two forms of N on growth, needle area, and N uptake of three Douglas fir halb-sib progenies were examined in a second sand culture. Response of Douglas fir to the two forms of N was followed over two years in nursery soil of different pH levels. In sand culture 1 mean seedling dry weight of all species, except hemlock, was greatest when ammonium N and nitrate N were provided in equal amounts. In all species, except Sitka spruce, ammonium alone resulted in greater growth than nitrate alone. Use of ammonium N resulted in greater growth of all species, than was obtained with nitrate N, at pH values in the region 5.4 and 7.5 in artificial soil culture. Only Douglas fir showed substantial differences due to N source below pH 5. Growth of all species was greater at pH 5.4 than at 7.5 in each N source treatment. Growth of Douglas fir seedlings was greatest with ammonium N and least with nitrate N in sand culture 2. Supply of nitrate and ammonium in equal proportions resulted in intermediate growth. Leaf area/plant weight ratio was unaffected by N source. Analysis of nutrient solutions showed appreciable nitrification of ammonium N during the 7 days between solution changes. In the three greenhouse experiments, with little exception, increase in proportion of ammonium in N supply resulted in increase of seedling tissue N concentration. This effect was more pronounced in roots than shoots. Total N uptake by ammonium fed seedlings was about double the N uptake of nitrate fed seedlings in sand culture 2. Nursery grown Douglas fir seedlings showed greater growth response to ammonium sulphate than to calcium nitrate, and this appeared due entirely to form of N supply in the first year. A similar response in the second year was partly due to greater soil acidification by ammonium sulphate. Compared with calcium nitrate, ammonium sulphate increased N concentration of one-year old shoots, but this difference was not detected by foliar analysis of two-year old seedlings.  相似文献   

16.
The effects of sod cutting, a common restoration measure to remove excess nutrients from grass-dominated heathlands, on nitrification were studied in dry and wet Dutch heathlands and in incubation experiments. In the field, soil ammonium and nitrate concentrations were measured after treatment by sod cutting, with or without additional liming. Potential net nitrification was measured by incubating soil samples of all treatments with extra ammonium in a climate chamber at pH 6. Potential net nitrification of heaths dominated by Molinia caerulea was significantly higher than that of dwarf-shrub dominated heaths. Sod cutting of the former areas significantly decreased potential net nitrification, whereas in the latter areas no differences were found. Liming of sod-cut soils greatly increased potential net nitrification and the accumulation of ammonium in the soil up to toxic concentrations could be prevented. Our results show that the combination of sod cutting and liming would create suitable soil conditions for the germination and establishment of endangered plant species of dry and wet heathlands. The success of restoration projects of these areas can thus be increased.  相似文献   

17.
Summary Chlorella vulgaris, grown with ammonium sulphate as nitrogen source, contains very little nitrate reductase activity in contrast to cells grown with potassium nitrate. When ammonium-grown cells are transferred to a nitrate medium, nitrate reductase activity increases rapidly and the increase is partially prevented by chloramphenicol and by p-fluorophenylalanine, suggesting that protein synthesis is involved. The increase in nitrate reductase activity is prevented by small quantities of ammonium; this inhibition is overcome, in part, by raising the concentration of nitrate. Although nitrate stimulates the development of nitrate reductase activity, its presence is not essential for the formation of the enzyme since this is formed when ammonium-grown cells are starved of nitrogen and when cells are grown with urea or glycine as nitrogen source. It is concluded that the formation of the enzyme is stimulated (induced) by nitrate and inhibited (repressed) by ammonium.  相似文献   

18.
Aim Climate is often regarded as the primary control determining the location of an ecotone between two vegetation zones. However, other ecological factors may also be important, especially when the northern limit of the dominant species of a vegetation zone extends further than the limit of the zone itself. This study aimed to identify the ecological variables explaining the transition between two zones within the boreal biome in Quebec (eastern Canada): the southern mixedwood forests dominated by balsam fir (Abies balsamea) and white birch (Betula papyrifera), and the northern coniferous forests dominated by black spruce (Picea mariana). Location Quebec (eastern Canada). Methods Data from 5023 sampling plots from the ecological inventory of the Québec Ministry of Natural Resources distributed throughout the two bioclimatic zones were used in logistic regressions to determine the relationships between the presence or absence of balsam fir stands and different abiotic and biotic variables, at both stand and landscape scales. Results The presence of balsam fir stands was negatively related to the thick organic horizons, coarse xeric deposits and low positions on the slope, whereas stands were favoured by high elevations, steep slopes and moderate drainage. These results defined the suitable conditions for the development of balsam fir stands. In the coniferous zone these suitable conditions were less abundant. Furthermore, the saturation level of suitable sites was lower, as well as the incidence of balsam fir stands in unsuitable sites (overflow). Balsam fir stands were mostly located near lakes and rivers. All significant variables at both the stand and landscape scales explained between 34 and 42% of the location of the potential northern distribution limit of the mixedwood zone. Main conclusions Our results suggest the important role of historical factors related to post‐glacial vegetation and past disturbances in determining the relative abundance of balsam fir in both zones of the boreal biome.  相似文献   

19.
s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50?μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils.  相似文献   

20.
Summary The effect of a commercial granular formulation of hexachlorocyclohexane (HCH) on nitrification in a flooded soil was studied at 10 and 100 ppm a.i. The oxidation of the added ammonium to nitrate was inhibited significantly at 10 ppm and almost completely at 100 ppm, concomitant with a proportional decrease in the, populations of ammonium- and nitrite-oxidising autotrophic bacteria. Of special interest is the synergistic increase in the inhibition of nitrification by a combined application of HCH and carbofuran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号