首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract In perennial plants, life-history theory suggests that natural selection should result in the optimization of fruit-to-flower ratios within the limits imposed by the trade-offs between resource allocation for present reproduction and future growth and reproduction. The tropical orchid Dendrobium monophyllum F. Muell., an epiphyte or lithophyte, offers no nectar rewards, is self-incompatible and has a capsule-to-flower ratio of about 1:14. The influence of pollination limitation and the costs of capsule production on capsule-to-flower ratios were assessed using experimental and field studies in which individual plants were observed for 3 years. Pollinators visited about 80% of flowers, and capsule production was significantly related to inflorescence size and pollinaria removal. About nine pollinator visits occurred per capsule. Pollinator visitation and capsule production did not vary significantly between years. The inflorescence size classes most successful in capsule production were also the most frequent in natural populations. The experimental supplementation of outcross pollen to flowers increased capsule set over controls by 45% within a year, but was limited to about 53%. A capsule-to-flower ratio of 1:2 in experimental plants significantly decreased the subsequent growth and flowering of individuals relative to controls. A capsule-to-flower ratio above 1:10 in naturally pollinated plants decreased flowering in the subsequent year. Thus, it is suggested than an increase in capsule production above 10% would not necessarily correlate with greater reproductive fitness because of the increased cost of capsule production. The capsule-to-flower ratio recorded in this study could be evolutionarily stable because of trade-offs between selection for pollinator attraction and the cost of capsule production. The production of surplus flowers appears to function in pollinator attraction and increases fitness through male function.  相似文献   

2.
Continually flowering plants bloom continuously throughout the year, as often seen in plants distributed along the roadsides or in the understory layers in Southeast Asia's tropical rain forests. Dillenia suffruticosa (Griff. ex Hook. f. & Thomson) Martelli (Dilleniaceae) is one such continually flowering shrub that flowers during periods of community‐wide mass flowering, general flowering (GF), and non‐GF. During irregularly occurring GF periods, when species of all forest layers flower synchronously for several months, some pollinators migrate to the canopy layer, where GF promotes the pollination success of participating plants. Continually flowering plants share the available pollinator community with GF plants, and the reproductive success of continually flowering plants may be affected during the GF period. To assess the effects of GF on the reproductive success of a diverse range of continually flowering plants, we examined the differences in pollinator density and reproductive success between GF and non‐GF periods in D. suffruticosa at four different research sites. Although the seed set differed among the four research sites, pollinator density and fruit set did not differ between GF and non‐GF periods or research sites. Our results suggest that the reproductive success of D. suffruticosa was maintained at an approximately constant level, regardless of the flowering phenology of the canopy layer or other vegetation components.  相似文献   

3.
Gentiana leucomelaena manifests dramatic flower color polymorphism, with both blue‐ and white‐flowered individuals (pollinated by flies and bees) both within a population and on an individual plant. Previous studies of this species have shown that pollinator preference and flower temperature change as a function of flower color throughout the flowering season. However, few if any studies have explored the effects of flower color on both pollen viability (mediated by anther temperature) and pollinator preference on reproductive success (seed set) in a population or on individual plants over the course of the entire flowering season. Based on prior observations, we hypothesized that flower color affects both pollen viability (as a function of anther temperature) and pollen deposition (as a function of pollinator preference) to synergistically determine reproductive success during the peak of the flowering season. This hypothesis was tested by field observations and hand pollination experiments in a Tibetan alpine meadow. Generalized linear model and path analyses showed that pollen viability was determined by flower color, flowering season, and anther temperature. Anther temperature correlated positively with pollen viability during the peak of the early flowering season, but negatively affected pollen viability during the peak of the mid‐ to late flowering season. Pollen deposition was determined by flower color, flowering season (early, or mid‐ to late season), and pollen viability. Pollen viability and pollen deposition were affected by flower color that in turn affected seed set across the peak of the flowering season (i.e., when the greatest number of flowers were being pollinated). Hand pollination experiments showed that pollen viability and pollen deposition directly influenced seed set. These data collectively indicate that the preference of pollinators for flower color and pollen viability changed during the flowering season in a manner that optimizes successful reproduction in G. leucomelaena. This study is one of a few that have simultaneously considered the effects of both pollen viability and pollen deposition on reproductive success in the same population and on individual plants.  相似文献   

4.
The balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi-scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio-temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect-pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm-scale experiment (125 ha). We applied an individual-based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio-temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra- and interspecific plant–pollinator interactions respond to spatio-temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co-occurrence of pollinator-mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

5.
We investigated the flowering phenology, pollinator visitation, and fruit set of 25 animal-pollinated woody species in a warm temperate secondary forest in Japan. Various species flowered sequentially from February to October. The principal pollinators were bumblebees, honey-bees, flies and/or beetles and birds; bumblebees and flies/beetles pollinated most trees. The duration of flowering was shorter for species that bloomed in the middle of the season than it was for species that bloomed earlier or later in the season. The timing of flowering was more synchronous within species that had a shorter flowering duration; this was also detected when phylogenetically independent contrasts were calculated. This could be important for the effective pollination of species with a short flowering duration because such species bloom sequentially over a short period of less than 1month around May. Fruit set was related not to pollinator type, sex expression, flowering sequence (in order of the date of peak flowering) or flowering duration, but to the relative abundance of the species in the forest. This correlation was detected for fly- and beetle-pollinated species but not for bumblebee-pollinated species. Thus, relatively rare plant species with opportunistic pollinators might experience limited fruit set because of insufficient pollinator services. Bagging experiments conducted on eight hermaphrodite species revealed that the fruit set of bagged flowers was nearly zero, lower than that of control flowers. These results indicate the importance of pollinators for successful reproduction and thus for the coexistence of plants in this secondary forest.  相似文献   

6.
Altitudinal changes in breeding and pollination systems of tropical montane plants were studied in 13 species of Espeletia growing in the Venezuelan Andes from 2,000 to 4,300 m. Hand pollination tests showed that all species were strongly self-incompatible. The four species found only above 4,000 m had up to 10% median seed set in self-pollinated heads, which was significantly higher than the lower elevation species. Nine species were insect-pollinated, with large bees the major pollinator group. An endemic páramo hummingbird, Oxypogon guerinii, was an important visitor of E. schultzii in three populations examined. Experimental bagging experiments showed that the four high elevation species were wind-pollinated, further evidenced by the lack of pollinator visits and markedly different capitulum morphologies. Open-pollinated seed set in two wind-pollinated species, E. spicata and E. timotensis, was strongly dependent on the population's flowering density, which varied significantly from year to year. The shift from insect to wind pollination in Espeletia can be related to the low pollinator availability at high elevations in the Andes, protection of the capitula from snow and daily frosts, and the extremely long flowering periods of individual heads.  相似文献   

7.
The role of mosquitoes and moths as pollinators of Habenaria obtusata was studied in northern Wisconsin during the summer of 1969. In each population studied, meter-square quadrants were marked and the number of plants, flowers per inflorescence, rate and time of pollinia removed, and capsule set recorded. Carbon dioxide and modified New Jersey Light Traps were set during the flowering period to capture pollinia-bearing insects. The study showed that female mosquitoes of the genus Aedes (particularly A. communis) and two species of Geometrid moths of the genus Xanthorhoe are important pollinators of H. obtusata. Pollination occurred during the last few days of flowering with an average of 18.0% of the pollinia removed and with 14.2% capsule set.  相似文献   

8.
Plant–plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination‐driven competition. We focused on two native Impatiens species (I. noli‐tangere and I. textori) found in Japan and examined whether pollinator‐mediated plant competition occurs between them. We demonstrate that I. noli‐tangere and I. textori share the same pollination niche (i.e., flowering season, pollinator fauna, and position of pollen on the pollinator's body). In addition, heterospecific pollen grains were deposited on most stigmas of both I. noli‐tangere and I. textori flowers that were situated within 2 m of flowers of the other species resulting in depressed fruit set. Further, by hand‐pollination experiments, we show that when as few as 10% of the pollen grains are heterospecific, fruit set is decreased to less than half in both species. These results show that intensive pollinator‐mediated competition occurs between I. noli‐tangere and I. textori. This study suggests that intensive pollinator‐mediated competition occurs in the wild even when interacting species are both native and not invasive.  相似文献   

9.
Among plants visited by many pollinator species, the relative contribution of each pollinator to plant reproduction is determined by variation in both pollinator and plant traits. Here we evaluate how pollinator movement among plants, apparent pollen carryover, ovule number, resource limitation of seed set, and pollen output affect variation in contribution of individual pollinator species to seed set in Lithophragma parviflorum (Saxifragaceae), a species visited by a broad spectrum of visitors, including beeflies, bees and a moth species. A previous study demonstrated differences among visitor species in their single-visit pollination efficacy but did not evaluate how differences in visitation patterns and pollen carryover affect pollinator efficacy. Incorporation of differential visitation patterns and pollen carryover effects —commonly cited as potentially important in evaluating pollinator guilds — had minor effects (0–0.6% change) on the estimates of relative contribution based on visit frequency and single-visit efficacy alone. Beeflies visited significantly more flowers per inflorescence than the bees and the moth. Seed set remained virtually constant during the first three visited flowers for beeflies and larger bees, indicating that apparent pollen carryover did not reduce per-visit efficacy of these taxa. In contrast, Greya moth visits showed a decrease in seed set by 55.4% and the smaller bees by 45.4% from first to second flower. The larger carryover effects in smaller bees and Greya were diminished in importance by their small overall contribution to seed set. Three variable plant traits may affect seed set: ovule number, resource limitation on seed maturation, and pollen output. Ovule number per flower declined strongly with later position within inflorescences. Numbers were much higher in first-year greenhouse-grown plants than in field populations, and differences increased during 3 years of study. Mean pollen count by position varied 7-fold among flowers; it paralleled ovule number variation, resulting in a relatively stable pollen:ovule ratio. Resource limitation of seed set increased strongly with later flowering, with seed set in hand-pollinated flowers ranging from 66% in early flowers to 0% in the last two flowers of all plants. Variation in ovule number and resource limitation of seed maturation jointly had a strong effect on the number of seeds per flower. Visitation to early flowers had the potential to cause more seed set than visitation to later flowers. Overall, the most important sources of variation to seed production contribution were differences among pollinators in abundance and absolute efficacy (ovules fertilized on a single visit) and potentially differential phenology among visitor species. These effects are likely to vary among populations and years.  相似文献   

10.
'Big Bang' flowering is common among geophyte plants and is a strategy particularly important in arid areas. Griffinia is a genus whose species have very ephemeral flowering. Not surprisingly, there is so far no information on the reproductive biology and pollination ecology of any Griffinia species. Here, we highlight an amazing phenomenon of massive flowering in Griffinia gardneriana, a species that blooms for only one or two nights and emits a remarkable odor plume in the Caatinga night. The flowering event of the species varied depending on the locality, but it was always associated with the rainy season. The high number of white tubular flowers produce a strong sweet perfume dominated by (E)-nerolidol (42%), linalool (33%) and (E)-β-ocimene (15%). Agrius cingulata (Sphingidae) was the only pollinator recorded. Because G. gardneriana set only a few fruits by self-pollination, in contrast to a high number of fruits under natural conditions, this hawkmoth pollination system seems to be very efficient.  相似文献   

11.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

12.
Flowering synchrony is essential for plant reproductive success, especially in the case of small‐sized populations of self‐incompatible species. Closely related to synchrony, flowering intensity influences pollinator attraction and pollinator movements. Thus, a high flowering intensity may increase pollinator attraction but, at the same time, may also increase the probability of geitonogamous pollinations. Depending on the mating system, the female fitness of plants in small populations may be affected by both the positive effects of higher flowering synchrony and pollinator attraction and the negative effects of geitonogamous pollinations induced by a high flowering intensity. It was hypothesized that different‐sized plants in a population would show contrasting flowering patterns, resulting in differences in pollinator behaviour. These influences could result in differences in mating and female reproductive success. This hypothesis was tested by studying the flowering pattern of Erodium paularense (Geraniaceae), a rare and endangered endemic of central Spain. The temporal distribution of flower production was explored throughout the reproductive season, and the probability of xenogamy and geitonogamy and their relationship to plant size and fitness components were calculated. The analysis of this partially self‐compatible species showed diverse flowering patterns related to different plant sizes. Small plants produced a larger number of seeds per fruit in spite of having lower values of flowering synchrony. By contrast, large plants produced a larger number of seeds from geitonogamous pollinations. The effect of different flower displays and outcrossing rates on seed set varied throughout the season in the different groups. Our findings highlight the relevance of individual plant size‐dependent phenology on female reproductive success and, in particular, on the relationship between flowering synchrony and fitness. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156 , 227–236.  相似文献   

13.
Host sympatry provides opportunities for cross‐species disease transmission and compounded disease effects on host population and community structure. Using the Silene–Microbotryum interaction (the castrating anther smut disease), eleven Himalayan Silene species were assessed in regions of high host diversity to ascertain levels of pathogen specificity. We also investigated disease prevalence, seasonal dynamics of infection and flowering patterns in five co‐blooming Silene species. We identified several new Microbotryum lineages with varying degrees of specialization that is likely influenced by degrees of host divergence and ecological similarities (i.e. shared pollinator guilds). Affected species had 15%–40% of plants infected by anther smut. Flowering was seasonally overlapping among host species (except for the species pair S. asclepiadea and S. atrocastanea), but diseased flowering onset was earlier than healthy plants, leading to dramatic seasonal shifts in observed disease prevalence. Overlapping distributions and flowering provides opportunities for floral pathogen movement between host species, but host specialization may be constrained by the plant phylogenetic relatedness, adaptation to micro‐habitats and difference in pollinator/vector guilds.  相似文献   

14.
Calotropis procera (Ait.) R.Br. (Apocynaceae), an invasive woody milkweed, has expanded its range in northern Australia affecting rangeland and pastoral productivity. While self‐compatibility should enhance the species range expansion, spread of C. procera is limited by the availability of larger wasp and bee species that are able to vector its solid pollinia. Pollination efficiency is thus likely dependent on both pollinator abundance and plant density. Calotropis procera flowers year round in Australia but fruiting is limited to the warm months of the year when pollinators are most abundant, indicating that seasonal regulation of reproduction may be due to pollinator limitation. We examine the propositions that C. procera reproduction is regulated by the interaction between plant population density and pollinator pressure and that low pollinator pressure causes low per capita plant fecundity. All pollinators belonged to Order Hymenoptera and pollinator composition was similar at six of the seven sites. Fruit production per plant (fecundity) was lower above and below intermediate densities (350–550 plants ha?1) of flowering plants with evidence of a weak Allee effect at lower plant density. Pollinator visitation rates per plant were low at high and low plant densities, and greatest at intermediate densities, while pollen supplementation experiments showed that C. procera is pollen limited (Pollen Limitation Indexfruit = 0.9) even at intermediate densities. Pollen limitation caused by low pollinator pressure at low plant densities and pollinator satiation at high plant densities may account for these fruit production trends. Management should be conducted in the colder months when pollinator pressure is low and plants are not reproducing. In addition, where stand eradication cannot be achieved in one attempt, management should reduce flowering plants to below intermediate densities where the fecundity per plant is low.  相似文献   

15.
Investigating plant–pollinator interactions and pollen dispersal are particularly relevant for understanding processes ensuring long‐term viability of fragmented plant populations. Pollen dispersal patterns may vary strongly, even between similar congeneric species, depending on the mating system, pollinator assemblages and floral traits. We investigated pollen dispersal and fruit production in a population of Vaccinium oxycoccos, an insect‐pollinated shrub, and compared the pollen dispersal pattern with a co‐flowering, sympatric congener, V. uliginosum. We examined whether they share pollinators (through interspecific fluorescent dye transfers) and may differently attract pollinators, by comparing their floral colour as perceived by insects. Fluorescent dyes were mainly dispersed over short distances (80% within 40.4 m (max. 94.5 m) for V. oxycoccos and 3.0 m (max. 141.3 m) for V. uliginosum). Dye dispersal in V. oxycoccos was not significantly affected by plant area, floral display or the proximity to V. uliginosum plants. Interspecific dye transfers were observed, indicating pollinator sharing. The significantly lower dye deposition on V. oxycoccos stigmas suggests lower visitation rates by pollinators, despite higher flower density and local abundance. The spectral reflectance analysis indicates that bees are unlikely to be able to discriminate between the two species based on floral colour alone. Fruit production increased with increasing floral display, but was not affected by proximity to V. uliginosum plants. Our study highlights that fragmented populations of V. oxycoccos, when sympatric with co‐flowering V. uliginosum, might incur increased competition for the shared pollinators in the case of pollination disruption, which might then reduce outcrossed seed set.  相似文献   

16.
In some areas of sympatry, reproductively compatible plant species hybridize, but in other areas of sympatry, they do not and they remain reproductively isolated from one another. Explanations offered to explain patterns of hybridization that vary by population have usually focused on genetic or environmental factors. Instead, we examined whether different community contexts might change pollinator preference and constancy and thus influence the likelihood of hybridization among three Indian paintbrush species (Castilleja miniata, C. rhexifolia, and C. sulphurea). To determine whether visitation was context‐dependent, we observed pollinator behavior in experimental arrays (constructed using flowering stems of the three Indian paintbrush species) in different contexts. Contexts were defined by which Castilleja species occurred in the immediate neighborhood of the arrays. Specifically, we asked, does visitation to particular species in the arrays depend on context? In general, each Castilleja species was preferred when it matched the surrounding community context, as is predicted by optimal foraging theory. More interestingly, pollinator constancy was weakened in the hybrid context (an area where the three species co‐occurred with morphologically intermediate plants), which is likely to increase pollen flow among the species. Reduced pollinator constancy in hybrid zones could set up a positive feedback loop in which more flower diversity is created through hybridization, decreasing pollinator constancy, and leading to more hybridization. This self‐reinforcing mechanism could lead to “hybridization hot spots” and to a patchy distribution of hybrid populations. We expect that this mechanism may be important in other animal‐pollinated plant hybrid zones.  相似文献   

17.
Decreases in pollinator abundance may particularly constrain plants that lack floral rewards, since they are poor competitors for pollinators in the plant community. Here, we documented the pollination ecology of a rewardless orchid, Calanthe reflexa Maxim., and examined effects of forest understory degradation by deer browsing on pollination success of the species in the light of a change in the abundance of neighboring flowering plants in 2010 and 2011. Bombus species were the only pollinators at each site and the flowering phenology of C. reflexa did not overlap with that of other rewarding plants. Pollinator visit rates (assessed by time‐lapse photography), and pollinia removal rate were higher in the undegraded understory site than the degraded site in both years, while the fruit set ratio did not differ between the sites in 2011. Coverage by neighboring flowering plants was extremely low in the degraded site. Our results suggest that, although its flowering phenology and consequently lower interspecific competition of C. reflexa with rewarding plants for attracting bumblebees, neighboring flowering plants may play an important role for maintaining the visitation frequency of bumblebees of C. reflexa and contribute to its pollination success.  相似文献   

18.
秦岭岩白菜的传粉生物学特性与繁育系统   总被引:1,自引:0,他引:1  
对珍稀濒危植物秦岭岩白菜(Bergenia scopulosa T.P.Wang)的开花特性、传粉适应及繁育系统进行了分析研究。结果表明:(1)秦岭岩白菜为蝎尾状聚伞花序,具(29±10)朵单花,单花期约15d,遇低温雨雪天气花冠闭合,可延长3~5d,花序花期约30d,种群花期近4个月。(2)花粉活力在花药开裂后的12h内最高(约90%),维持单花平均花粉活力在30%以上约6d;柱头在第1~4天内保持很强的可授性,维持可授性的时间约为9d。(3)秦岭岩白菜主要有效传粉昆虫为中华蜜蜂,平均访花频率为6.5朵/min,单花停留时间为(11.0±4.8)s。(4)秦岭岩白菜的花粉胚珠比(P/O)为589.8,杂交指数(OCI)为3;人工授粉实验显示,秦岭岩白菜不存在无融合生殖,自交亲和,主动自交罕见,生殖成功主要依赖传粉者。研究认为,秦岭岩白菜是兼性异交的繁育系统,胚珠受精过程中可能存在自交衰退。  相似文献   

19.
Floral displays of invasive plants have positive and negative impacts on native plant pollination. Invasive plants may also decrease irradiance, which can lead to reduced pollination of native plants. The effects of shade and flowers of invasive plant species on native plant pollination will depend on overlap in flowering phenologies. We examined the effect of the invasive shrub Lonicera maackii on female reproductive success of the native herb Hydrophyllum macrophyllum at two sites: one with asynchronous flowering phenologies (slight overlap) and one with synchronous (complete overlap). At each site, we measured light availability, pollinator visitation, pollen deposition, and seed set of potted H. macrophyllum in the presence and absence of L. maackii. At both sites, understory light levels were lower in plots containing L. maackii. At the asynchronous site, H. macrophyllum received fewer pollinator visits in the presence of L. maackii, suggesting shade from L. maackii reduced visitation to H. macrophyllum. Despite reduced visitation, H. macrophyllum seed set did not differ between treatments. At the synchronous site, H. macrophyllum received more pollinator visits and produced more seeds per flower in the presence of co-flowering L. maackii compared to plots in which L. maackii was absent, and conspecific pollen deposition was positively associated with seed set. Our results support the hypothesis that co-flowering L. maackii shrubs facilitated pollination of H. macrophyllum, thereby mitigating the negative impacts of shade, leading to increased seed production. Phenological overlap appears to influence pollinator-mediated interactions between invasive and native plants and may alter the direction of impact of L. maackii on native plant pollination.  相似文献   

20.
Although pollination networks between plants and flower visitors are diverse and flexible, seed production of many plant species is restricted by pollen limitation. Obligate outcrossers often suffer from low pollinator activity or severe interspecific competition for pollinator acquisition among co-flowering species. This study focused on seasonal changes in plant–flower visitor linkages in an alpine ecosystem and examined whether and how this seasonality affected the seed-set of Primula modesta, a self-incompatible distylous herb having long-tubed flowers. First, we recorded the linkages between plants and flower visitors along the snowmelt gradient. Then, pollination experiment was conducted to estimate the degree of pollen limitation over the course of flowering season of P. modesta. Flower visitors were classified by their tongue length based on the morphological matching with P. modesta flowers. As the season progressed, plant–visitor linkages became more diverse and generalized, and the visitation frequency to P. modesta flowers increased. In the later part of the season, however, the seed set of P. modesta was significantly reduced due to severe pollen limitation, presumably because of increased competition for long-tongued pollinators among co-flowering species. The present study revealed that pollinator availability for specialist species may be restricted even when plant–visitor linkages are diverse and generalized as a whole. In the case of P. modesta, morphological matching and competition for pollinators might be the main factors explaining this discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号