首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
Both methyl jasmonate (MJ) and ethylene have been implicated in promoting senescence, but the specific roles of each and the mechanisms by which they act are not well known. We tested the possibility that MJ and ethylene interact to promote senescence. In sunflower seedlings, the ability of MJ to affect ethylene metabolism was investigated in hypocotyls, cotyledons, and leaves. 1-aminocylcopropane-1-carboxylic acid (ACC)-dependent ethylene production was promoted to different extents depending on the organ and the age of the tissue. Newly emerged hypocotyls were sensitive to MJ, but became desensitized as the cotyledons emerged. The cotyledons increased and peaked in MJ sensitivity from emergence to the production of the primary leaves. Leaves were found to be somewhat insensitive to MJ treatment compared to cotyledons at all ages tested. In cotyledons, MJ also promoted ACC and ethylene production. However the changes in ACC, and ACC-dependent ethylene production were not directly correlated with those in ethylene production with respect to MJ concentration or tissue age. Moreover, changes in ACC-dependent ethylene production did not correlate with in vitro ACC oxidase activity. We hypothesized that MJ affects ethylene production by increasing the spatial access of ACC to ACC oxidase perhaps through increased membrane permeability. Ethylene was not involved in the MJ-induced loss of chlorophyll. But the breakdown of cell integrity and cell membranes (estimated by monitoring conductivity of the solution that bathed the cotyledons) was greatly and synergistically promoted by the combination of MJ and ethylene. Promotion of membrane breakdown by MJ and ethylene could be inhibited by treatments with ethylene inhibitors (STS or CoCl2), and neither MJ nor ACC treatment alone could induce as much membrane breakdown as both together. We suggest that MJ and ethylene interact to accelerate some aspects of senescence in specific organs for nutrient remobilization for the benefit of the whole plant.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MJ methyl jasmonate - STS silver thiosulphate  相似文献   

2.
A study was made of linolenic acid-dependent oxidative chlorophyll bleaching (CHLOX) by thylakoid membranes from senescing leaf tissue of a normal cultivar (cv. Rossa) and a non-yellowing mutant genotype (Bf 993) of Festuca pratensis Huds. To overcome the problem of variation in levels of endogenous chlorophyll substrate in membranes from different sources, light-harvesting complex (LHC) was used to supplement thylakoid pigment. It was shown that CHLOX is associated with both Photosystem I and LHC-rich thylakoid subfractions but that purified LHC has negligible associated CHLOX activity and stimulates the rate of bleaching by isolated entire chloroplast membranes. Non-senescent tissue of Bf 993 and Rossa had essentially identical thylakoid CHLOX levels, which subsequently declined during senescence in darkness. The half-life of CHLOX from the mutant was three times greater than that of the normal genotype. In both cultivars, the amount of CHLOX assayed in thylakoids isolated at different times during senescence was more than adequate to support the corresponding in-vivo rate of pigment degradation as calculated from the half-life for chlorophyll. It was concluded that the non-yellowing mutation is not expressed through a lack of CHLOX activity. The role of linolenic acid metabolism in the regulation of thylakoid structure and function during senescence, and as a likely site of the non-yellowing lesion, are discussed.Abbreviations CHLOX linolenic acid-dependent oxidative chlorophyll bleaching activity - CHLPX chlorophyll peroxidase - CPI chlorophyll-protein complex I - LHC light-harvesting complex - LNA linolenic acid - PSI photosystem I - PSII photosystem II - S relative senescence rate - t 1/2 lialf time for degradation  相似文献   

3.
The effects of nitrogen limitation on the ultrastructure of the unicellular cyanobacterium, Agmenellum quadruplicatum, were studied by thin sectioning transmission electron microscopy. Nitrogen became limiting for growth 14–15 h after transfer to nitrogen-limiting medium, but cultures retained full viability for at least 45 h. The c-phycocyanin: chlorophyll a ratio and cellular nitrogen content of the culture dropped rapidly after 14–15 h, as a progressive deterioration of major cell structures took place. Phycobilisomes were degraded first, followed by ribosomes and, then, thylakoid membranes. These structures were virtually depleted from the cells within 26 h. Intracellular polysaccharide accumulated in place of the normal cell structures throughout this period. Nitrogen limitation did not affect polyphosphate bodies, carboxysomes, lipid granules, the cell envelope, or the extra-cellular glycocalyx. All of the ultrastructural changes resulting from nitrogen limitation were reversed upon addition of nitrate to a starved culture. Most cell structures were restored within 3 h, and restoration was complete within 9 h.  相似文献   

4.
Chloroplast structure and function is known to alter during foliar senescence. Besides, the alterations in the structural organisation of thylakoid membranes changes in the steady state levels of thylakoid membrane proteins occur due to leaf ageing. We monitored temporal changes in some of the specific proteins of thylakoid membrane protein complexes by western blotting in the Cucumis sativus cotyledons as a function of the cotyledon age. We observed that the levels of D1 and D2 proteins of photosystem II started declining at the early stages of senescence of Cucumis cotyledons and continued to decline with the progress of cotyledon age. Similarly the level of Cyt f of Cyt b6/f complex declined rapidly with progress of senescence in these cotyledons. The reaction centre proteins of photosystem I were relatively found to be more stable than that of photosystem II reaction centre proteins reflecting possibly the disorganisation of photosystem II prior to photosystem I. The 33 kDa extrinsic protein (MSP) of oxygen evolving complex, the LHCII apoprotein and the beta-subunit of ATPsynthase showed the declined levels with the progress of cotyledon age. However, the extents of loss of these proteins were not as high as the reaction centre proteins of photosystem II and the Cyt f. These results provide that during senescence, proteins of thylakoid membranes degrade in a specific temporal sequence and thereby affect the temporal photochemical functions in Cucumis sativus cotyledons.  相似文献   

5.
Walters C  Landré P  Hill L  Corbineau F  Bailly C 《Planta》2005,222(3):397-407
Imbibing sunflower (Helianthus annuus L., cv. Briosol) seeds at water potentials between –2 MPa and –5 MPa leads to faster (priming) or slower (accelerated ageing) germination depending on the temperature and duration of treatment. Mobilization of food reserves may be associated with the changes in seed vigor. To study this, morphological, biochemical and phase properties of lipid, the major food reserve in sunflower, were compared in freshly harvested (i.e., control), primed and aged sunflower cotyledons using electron microscopy, biochemical analyses and differential scanning calorimetry, respectively. Lipid bodies became smaller and more dispersed throughout the cytoplasm during priming and ageing. Despite ultrastructural changes, there were few measured changes in biochemistry of the neutral lipid component; lipid content, proportion of saturated and unsaturated fatty acids and level of free fatty acids were unchanged in primed and slightly aged seeds, with only severely aged seeds showing a net decrease in polyunsaturated fatty acids and an increase in free fatty acids. Subtle changes in the calorimetric behavior of lipids within sunflower cotyledons were observed. Sunflower lipids exhibited polymorphic crystalline and amorphous solid phases when cooled to <–100°C, but priming decreased the rate of crystallization in vivo and ageing increased the rate of crystallization, but decreased percentage crystallinity. The observed changes in thermal behavior in vivo are consistent with losses and gains, respectively, of interacting non-lipid moieties in the triacylglycerol matrix.  相似文献   

6.
A protein-import system prepared with isolated chloroplastswas used to monitor changes in levels of mRNAs for chloroplast-targetedproteins during dark-induced leaf senescence. Biologically activechloroplasts were isolated from young (9-day-old) and aged (14-day-old)radish cotyledons. Poly(A)+-RNA was prepared from radish cotyledonsthat had been detached from seedlings and placed in darknessto accelerate senescence. The RNA was translated in a wheatgerm system, and the products were added to an import systemprepared with chloroplasts from young cotyledons. Electrophoreticanalysis of the imported proteins suggested that most chloroplast-targeted proteins decreased in abundance during dark treatmentof cotyledons. However, the relative abundance of 38 stromaland three thylakoid proteins increased transiently or continuouslyamong the products of translation of RNA isolated during thecourse of senescence. The efficiency of the uptake of precursorproteins by chloroplasts isolated from aged cotyledons was lowerthan that by chloroplasts from young tissue. The chloroplastsfrom aged cotyledons more efficiently imported at least onestromal protein and one thylakoid protein than chloroplastsfrom the young tissue. The relative abundance of these two proteinsincreased among the products of translation of RNA from senescingcotyledons when tested in the uptake system with chloroplastsfrom young cotyledons. These results suggest that some nucleargenes for chloroplast-targeted proteins are expressed in senescingcotyledons more efficiently than in young tissue, and that themachinery for import of proteins into chloroplasts changes duringaging of the tissue to allow more efficient import of certainproteins that may be responsible for the senescence of the chloroplasts. 1Present address: Kihara Institute for Biological Research,Yokohama City University, Mutsukawa 3-122-20, Minami-ku, Yokohama,232 Japan  相似文献   

7.
Karlický  V.  Podolinská  J.  Nadkanská  L.  Štroch  M.  Čajánek  M.  Špunda  V. 《Photosynthetica》2010,48(3):475-480
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.  相似文献   

8.
The structural details of membrane organization in germinating and senescing cotyledons of cowpea (Vigna unguiculata (L.) Walp.) were studied by thin section and freeze-fracture electron microscopy. Germination- and senescence-related changes in the ultrastructure of parenchymal cells of cowpea cotyledons, as detected in thin sections, closely resemble those described for other leguminous seeds. Additionally, electron-dense deposits associated with the membranes, particularly the plasmalemma and endoplasmic reticulum, were seen to increase with advancing senescence. Freeze-fracture electron microscopy demonstrated that the membranes of cotyledons of 2-d-old seedings appear to be normal, with evenly dispersed intramembranous particles. However by 4 d, small areas or domains of the plasmalemma were free of intramembranous particles. These particle-free areas increased in both size and number as senescence progressed. We interpret these particle-free areas to be structural evidence for lateral phase separations of the membrane lipids into microdomains of gel-phase lipid from which intrinsic membrane proteins are excluded. Our results support wide-angle X-ray diffraction studies which have demonstrated the presence of gel-phase lipids in senescing bean cotyledons.Abbreviations EF exoplasmic fracture - ER endoplasmic reticulum - ESR electron-spin resonance - IMP(s) intramembranous particle(s) - PF protoplasmic fracture  相似文献   

9.

Background and Aims

Etiolation symptoms and the greening process are usually studied on dark-germinated seedlings and this raises the question – can these results be generalized for plants growing under field conditions? This work examines various aspects of the plastid differentiation under the covering of the achene wall, which often remains attached to the cotyledons of sunflower (Helianthus annuus) seedlings grown under light.

Methods

Cotyledons of 7- to 10-d-old sunflower seedlings grown in the dark and on light were examined. The partially covered cotyledons were sectioned into light-exposed, covered and transition zones. Pigment contents, 77 K fluorescence spectroscopy, electron microscopy and fluorescence imaging, along with fluorescence kinetic methods, were used.

Key Results

The light-exposed zone of the partially covered cotyledons was similar to cotyledons developed without achene covering. However, some of the plastids had prolamellar bodies among the granal thylakoid membranes; despite this no protochlorophyllide was detected. The fully covered, yellowish sections contained protochlorophyllide forms emitting at 633 and 655 nm and well-developed prolamellar bodies, similar to those of etiolated cotyledons. In addition, reduced amounts of chlorophyll a, chlorophyll b and stacked thylakoid membrane pairs were found in this region. The transitional sections showed a mixture of the characteristics of the covered and exposed sections. Various, but significantly different values of the photosynthetic activity parameters were found in each sector of the partially covered cotyledons.

Conclusions

The partial covering of the achene wall shades the cotyledon tissues effectively, enough to provoke the appearance of etiolation phenomena, i.e. the permanent presence of flash-photoactive protochlorophyllide complexes and prolamellar bodies (with or without protochlorophyllide), which proves that these phenomena may appear under natural illumination conditions.Key words: Cotyledon, etio-chloroplast, etioplast, etiolation, Helianthus annuus, photosynthetic activity, protochlorophyllide, prolamellar body, sunflower  相似文献   

10.
InPinus ponderosa Dougl., application of the cytokinins, benzyladenine and 2-isopentenyl adenine, to excised cotyledons, promoted thein vitro formation of meristematic centers which led to bud and shoot production. Meristematic cells showed plastids with poorly developed thylakoid membranes and rudimentary grana, whereas cells in non-meristematic tissues and in growth regulator free medium, had chloroplasts with well developed inner membranes, and more thylakoid membranes and grana than plastids of meristematic cells. Chlorophyll and six polypeptides associated with photosynthesis were present in lower concentrations in cytokinin-treated cotyledons than in those cultured in growth regulator free medium. Both benzyladenine and 2-isopentenyl adenine are effective in inhibiting the accumulation of at least two photosynthetic polypeptides in the first 24 h in culture. The ability of cotyledons to respond in this way to cytokinins is lost after three days in culture in growth regulator free medium prior to treatment with cytokinin.  相似文献   

11.
An ultrastructural study of four cyanobacteria (Anabaena cylindrica, Dermocarpa violaceae, Gleocapsa alpicola, Pleurocapsa minor) indicates the presence of previously undescribed thylakoid centers from which photosynthetic membranes (thylakoids) radiate. These peripherally located thylakoid centers are cylinders 30 nm wide by 320 nm long, consisting of globular subunits oriented in nonparallel stacked arrays. Thylakoids are attached to the outer surface of the cylinder along its longitudinal axis. Thylakoid centers appear to be functionally significant due to their structure, location and thylakoid association.  相似文献   

12.
Changes of chloroplast thylakoid membrane stacks and Chl a/b ratio in the plumule of sacred lotus (Nelumbo nucifera Gaertn) seeds during their germination under light were as follows: Before germination there were giant grana and very low Chi a/b ratio (0.9) in the chloroplasts. Two days after germination, the thylakoid membranes of the giant grana gradually loosened and even destacked (disintegrated), the Chl a/b ratio was 1.06. Four clays after germination, the newly formed grana thylakoid membranes were 3–5 times shorter than those of the supergrana thylakoid membranes before germination and less grana stacks were seen; the Chl a/b ratio was 1.42. Six days after germination, the stacked thylakoi membranes became more orderly arranged. In addition the grana increased in number, the stroma thylakoid membranes were scarce, the Chl a/b ratio was 2.16. Eiglt days after germination, the thylakoid membranes in each granum decreased, but the total number of grana increased only slightly. In the meantime, some large starch grains and more stroma thylakoid membranes appeared; the Chl a/b ratio was 2.77. Ten days after germination normal thylakoid membrane structure was formed both in grana and stroma lamellae. They were arranged orderly as in the chloroplasts of other higher plants; the Chl a/b ratio was 2.80. The following conclusions could be drawn from the above mentioned results: 1) There was a negative correlation between the degree of stacking of the grana thylakoid membranes and the Chl a/b ratio. This statement further proved that the membranes stacking might mainly be induced by LHCII. 2) Development of the grana thylakoid membranes within chloroplasts from sacred lotus plumule followed that of the stroma thylakoid membranes, and the tendency of changes of their Chl 2/b ratio being from the lowest to the highest and then to normal were quite different from those of other higher plants. The chloroplasts iri the latter plants contain long parallel stacks of nonappressed primary thylakoids at second step, and the changes of their ratio of Chl a/b tend to be from the highest to the lowest and then to normal. There are indications that sacred lotus plumule might employ a distinctive developing pathway. This provides an important basis for Nelumbo to possess an unique position in phylogeny of Angiospermae.  相似文献   

13.
Howard Thomas 《Planta》1977,137(1):53-60
A study was made of the structure and function of senescent chloroplasts from a non-yellowing (NY) mutant of Festuca pratensis. Electron microscopy suggested that the stroma matrix was destroyed but that thylakoid membranes persisted in a loose, unstacked condition. By contrast, chloroplasts from the normal (Y) genotype lost both stroma and recognizable thylakoid systems. Fraction 1, the major protein of the stroma, disappeared from Y and NY at similar rates during senescence. The activities of photosystems I and II from NY also declined at a similar rate to Y photosystems. Polypeptides of chloroplast membranes were separated by SDS gel electrophoresis into at least 30 components. There was considerable heterogeneity in rates of breakdown of the different protein species of the membranes. Of the five major polypeptide components, two had kinetics of breakdown similar to those of stroma proteins and were lost from NY and Y at about the same rate, whereas the remaining three (one of which was tentatively identified as the apoprotein of the light-harvesting chlorophyll-protein complex) were more stable in NY than in Y. These results are discussed in relation to the mechanism and function of chloroplast disintegration during leaf senescence.Abbreviations RuDPC ribulose diphosphate carboxylase - NY and Y non-yellowing and normal genotypes of Festuca, respectively - PSI and PSII photosystems I and II, respectively - SDS sodium dodecyl sulphate - MW molecular weight - CF coupling factor  相似文献   

14.
Subhan  D.  Murthy  S.D.S. 《Photosynthetica》2001,39(1):53-58
Al3+ significantly delayed the loss of chlorophyll (Chl), protein, and carotenoids when compared to K+ and Mg2+ during dark-induced senescence of detached primary leaves of Triticum aestivum. Thylakoid membranes isolated from Al3+ - treated leaves showed a better retention of photosystem (PS) 2, PS1, and whole chain electron transport activities than thylakoids of K+- or Mg2+-treated leaves. These ions protected the electron transport activities and restored the DCMU-dependent fluorescence increase of thylakoid membranes in a valency-dependent manner. Al3+ also delayed the change of excitation energy distribution during senescence.  相似文献   

15.
A leaf spot disease of melon caused by Alternaria alternata f.sp. cucurbitae was recorded for the first time in Crete. Necrotic flecks surrounded by chlorotic halos developed on the cotyledons and the leaves of the middle and the upper part of the plants; the flecks enlarged and coalesced to form lesions of 2 cm or more in diameter with brown fructifications of the pathogen on their surface. Severely affected cotyledons and leaves became chlorotic and died. Of 16 species from eight botanical families that were inoculated, only those of the Cucurbitaceae were susceptible. Of four isolates of A. alternata from tomato, sunflower, pear and cucumber, only the cucumber isolate was pathogenic to melon foliage.  相似文献   

16.
Plasma membrane fractions isolated from cotyledons of Phaseolus vulgaris L. cv. Kinghorn at various stages of senescence showed no significant change in fatty acid saturation with advancing senescence. However, the steroliphospholipid ratio increased by about 400% as senescence intensified. The lipid phase transition temperature of the membranes, which was measured by wide-angle x-ray diffraction, also rose from a point well below the growing temperature for young tissue to about 50°C for membrane from extensively senescent 9-day-old tissue. This means that by day 4 of germination there was a mixture of liquid-crystalline and gel phase phospholipid in the membrane matrices. Crystallinity attributable to sterol-sterol interaction was also apparent in the diffraction patterns for senescent membranes. The co-existence of gel and liquid-crystalline phase phospholipid in the aging membranes as well as the crystalline sterol aggregates presumably render the storage cells of cotyledons leaky and may thus facilitate the translocation of hydrolyzed food reserves into the vascular network.  相似文献   

17.
Boron deficiency induced a dramatic inhibition in sunflower plant growth, shown by a reduction in dry mass of roots and shoots of plants grown for 10 d in nutrient solution supplied with 0.02 μM B. This low B supply facilitated the appearance of brown purple pigmentation on the plant leaves over the entire growth period. Compared to B-sufficient (BS) leaves, leakage from B-deficient (BD) leaves was 20 fold higher for potassium, 38 fold for sucrose, and 6 fold for phenolic compounds. High level of membrane peroxidation was detected by measuring peroxidase activities as well as peroxidative products in BD sunflower plants. Soluble and bound peroxidase activities measured in BD thylakoid membranes were accelerated two fold compared to those detected in BS-membranes. No detectable change in soluble peroxidase activity in roots whereas a 4 fold stimulation in bound peroxidase activity was detected. Thylakoid membranes subjected to low B supply showed enhancement in lipoxygenase activity and malondialdehyde (MDA) content in parallel with 40 and 30 % decrease of linoleic and linolenic acid contents (related to total unsaturated fatty acids). A slower rate of Hill reaction activity (40 %) and a suppressed flow of electron transfer of the whole chain (30 %) were detected in BD thylakoid membranes. This reduction was accompanied with a decline in the activity of photosystem 2 shown by a diminished rate of oxygen evolution (42 %) coupled with a quenching (27.5 %) in chlorophyll a fluorescence emission spectra at 685 nm (F685). Thus B is an important element for membrane maintenance, protection, and function by minimizing or limiting production of free oxygen radicals in thylakoid membranes of sunflower leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
We report the formation and appearance of loosely stacked extended grana like structures along with plastoglobuli in the chloroplasts isolated from 27-day old senescing cucumber cotyledons. The origin and the nature of these extended grana structures have not been elucidated earlier. We isolated Photosystem I complexes from 6-day-old control and 27-day-old senescing cotyledons. The chlorophyll a/b ratio of the isolated Photosystem I complex obtained from 6-day cotyledons was 5–5.5 as against a ratio of 2.9 was found in Photosystem I complexes obtained from 27-day-old senescing cotyledons. We also found that the presence of LHC II in the Photosystem I complexes isolated from 27-day cotyledonary chloroplasts. The presence of LHC II in Photosystem I complexes in senescing and not in control samples, clearly suggest the detachment and diffusion of LHC II complexes from stacked grana region to Photosystem I enriched stroma lamellar region thereby, forming loose disorganized extended grana structures seen in the transmission electron microscope. Furthermore, we show that under in vitro condition the senescing cotyledon chloroplasts exhibited lower extent of light induced phosphorylation of LHC II than the control samples suggesting a possible irreversible phosphorylation and diffusion of LHC II in vivo during the progress of senescence in Cucumis cotyledons. From these findings, we suggest that the senescence induced phosphorylation of LHC II and its migration towards Photosystem I may be a programmed one some how causing the destruction of the thylakoid membrane. The released membrane components may be stored in the plastoglobuli prior to their mobilization to the younger plant parts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The effect of streptomycin on morphogenic explants of Lycopersicon peruvianum Mill. was examined microscopically at both the light and ultrastructural level. Early stages in shoot regeneration from leaf explants were distinguished as meristematic tissue at both levels. Small starch grains were observed in the plastids in this tissue but not in plastids in regenerated shoots. In the presence of streptomycin, adventitious shoot regeneration from sensitive leaf strips was inhibited. Large layered bodies were observed within the plastids of sensitive leaf tissue, suggesting the disruption of thylakoid membrane formation. Streptomycin resistant L. peruvianum lines, as well as a chlorophyll-deficient line, were also examined microscopically. The chloroplasts of newly regenerated streptomycin resistant shoots contained well developed internal membranes and conspicuous starch grains. Cells containing a mixture of resistant and sensitive plastids were not observed. The plastids in chlorophyll-deficient tissue completely lacked thylakoid membranes, although small vesicles and intraplastid bodies were seen within the stroma.Abbreviations NMU N-methyl-N-nitrosourea  相似文献   

20.
Changes in the plastid ultrastructure as revealed by thin-section electron-microscopy, chlorophyll a/b ratio, and the polypeptides of the thylakoid chlorophyll-protein complexes have been examined during the degreening of bananas (Musa AAA Group, Cavendish Subgroup) and plantains (Musa AAB Group, Plantain Subgroup) ripened at 20°C and 35°C. In bananas, where degreening is inhibited at temperatures above 24°C, ripening at the higher temperature results in a retention of thylakoid membranes, a relatively delayed breakdown in chlorophyll b, and a reduced dismantling of pigment-protein complexes. By contrast, in plantains, where degreening is complete within 4 days at both 20°C and 35°C, thylakoid membranes and their associated pigment-protein complexes are lost, and there is a rapid increase in chlorophyll a/b ratios at both ripening temperatures. It is suggested that the retention of thylakoid membranes is an important factor in the failure of Cavendish bananas to degreen when ripened at tropical temperatures, and that the degreening problem may be related to the comparatively high chlorophyll b content of the preclimacteric fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号