首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To determine the effects of tephra (volcanic aerial ejecta) on forest understory plants, six sites were chosen along a tephra depth gradient (23 to 150 mm) northeast of Mount St. Helens, USA. All sites were in old forests beyond the limits of direct blast damage from the volcanic eruption. At each site, 150 one m2 plots were permanently marked; all tephra was removed from 50 of these in 1980. Cover and density of plant species were recorded during 1980, 1981, and 1982.Tephra 23 mm deep had almost no effect on cover and density of vascular plants, and reduced bryophyte cover for only two years. Tephra 45 mm deep destroyed almost all bryophytes. Although damaged by 45 mm tephra, deciduous herbs recovered by 1982, but some evergreen species did not. Tephra 75 mm deep reduced herb cover in 1982 to 32% and density to 26% of that in cleared plots. At two sites with an average tephra depth of 150 mm, almost all herbs were eliminated except in microsites where tephra was thin, but shrub abundance was greatly reduced only where snow had been present during tephra deposition. Almost all cover was contributed by plants established previous to the eruption; seedling cover never exceeded 0.2%. Refugia with thin tephra, resulting from erosion, were vital to the survival of many species, especially bryophytes.Nomenclature of vascular plants follows Hitchcock & Cronquist (1973); moss nomenclature follows Lawton (1971).We thank T. Hill, C. Halpern and B. Smith for field assistance. The USDA Forest Service, and especially J. F. Franklin, facilitated entry into the restricted area around Mount St. Helens. This word was supported by the National Science Foundation, USDA Science and Education Administration, and the U.S. Forest Service Pacific Northwest Forest and Range Experiment Station.  相似文献   

2.
Abstract. Patterns of plant succession were studied in areas of scorched and blown-down forest resulting from the 1980 eruption of Mount St. Helens, Washington. Changes in species abundance were observed for 7 years in permanent sample plots representing four post-disturbance habitats, or site types. Total plant cover and species richness increased with time on all site types. In blown-down forests supporting snowpack at the time of eruption, understory recovery was dominated by the vegetative regeneration of species persisting through disturbance. In forests without snowpacks, plant survival was poorer. Increases in cover and diversity were dominated first by introduced grasses, then by colonizing forbs characteristic of early successional sites. Epilo-bium angustifolium and Anaphalis margaritacea showed widespread recruitment and clonal expansion throughout the devastated area. As a result, species composition on previously forested sites converged toward that on formerly clearcut sites, where early serai forbs resprouted vigorously from beneath the tephra. Total plant cover and species diversity were poorly correlated with post-disturbance habitat and general site characteristics (e.g. distance from the crater, elevation, slope, and aspect). However, distributions of several life-forms (e.g. low sub-shrubs and tall shrubs) were strongly correlated with depth of burial by tephra and with cover of tree rootwads. Thus, early community recovery may reflect microsite variation or chance survival and recruitment rather than broad-scale gradients in environment or disturbance. Recovery of pre-disturbance composition and structure will undoubtedly be much slower than after other types of catastrophic disturbance. The rate and direction of community recovery will largely depend on the degree to which original understory species survived the eruption.  相似文献   

3.
Question: How do forest herb species differ from each other in their spatial and temporal dynamics during recovery from volcanic disturbance, and how are dynamics related to species traits? Location: Northeast of Mount St. Helens, Washington, USA. Methods: Following deposition of volcanic tephra in 1980, we measured herb density and cover in permanent 1‐m2 plots during 1980‐2005 in three old‐growth forests with differing tephra depths. For 26 species, we calculated the frequency of plots with residuals (individuals that survived the eruption) versus re‐establishment on the tephra, timing of establishment, turnover, influence of nearby conspecific plants, importance of three components of cover increase, and relationship of flowering frequency to succession. Results: Tephra depth affected species behavior. Deep tephra produced fewer residuals, a greater increase in shoot size, and more shoot turnover; favored species that established late; and allowed establishment of early seral herbs. Nearby presence of conspecifics increased permanence of first establishment and rate of plot occupancy. Most species spread significantly in deep tephra but not in shallow tephra. Among species, frequency of flowering increased with fewer residuals, later establishment, and higher turnover. Species behavior seldom differed among growth forms based on leaf longevity and vegetative spread. Conclusion: Population dynamics at the small‐plot scale differed from those of the entire population. The timing and permanency of establishment and mechanism of expansion differed among species and with tephra depth. There was some consistency among species with similar habitat breadth and degree of flowering, but little consistency associated with the usual growth form classification.  相似文献   

4.
Tree regeneration after bamboo die-back in Chinese Abies-Betula forests   总被引:2,自引:0,他引:2  
Abstract. Gaps created by disturbance in the forest canopy are important sites for tree regeneration from seed but plants already established in gaps may slow gap-filling. This study deals with consequences of bamboo die-back for tree regeneration and the dynamics of Abies-Betula forests in southwest China. Bamboo dominates the forest understory impeding tree regeneration when in its vegetative phase. Populations of tree seedlings were sampled in 1984–85 and 1990 in two sets of permanent plots where bamboo had died back in 1983. Both Abies and Betula density increased after bamboo die-back, Betula more so than Abies, especially in gaps. Before bamboo die-back, seedlings were established on raised surfaces such as logs but afterwards seedlings became common on the forest floor. This reduced the intensity of clumping of seedling populations between 1984 and 1990. A tree by tree replacement model predicts an increase in Abies and a decrease in Betula after bamboo die-back. Life histories of tree species, gap characteristics, and the bamboo growth cycle (mature/die-back/building) interact to promote fluctuating dominance of Abies and Betula in old-growth forests.  相似文献   

5.
Question: How do temporal changes in plant communities occur after volcanic eruptions? What characteristics determine successional divergence or convergence? Location: The summit area of Mount Usu, northern Japan, completely destroyed by 1‐3 m of thick ash and pumice during the 1977‐1978 eruptions. Habitats were classified into three types: gullies where the pre‐eruption topsoil was exposed due to the erosion of tephra (EG), gullies covered with tephra (CG), and outside of gullies covered with thick tephra (OG). Methods: Plant community structure was monitored for 15 years from 1983 to 1997 in 14 2 m × 5 m permanent plots. The data were summarized by species diversity, life form, and the detrended correspondence analysis. Results: The common species were perennial herbaceous plants, but habitat preferences differed between species. Seed bank species, including a nitrogen fixer Trifolium repens, were dominant in EG, and excluded the establishment of the later colonists. Pioneer trees slowly increased in cover. The detrended correspondence analysis indicated that species composition in the earlier stages did not differ greatly between plots. Thereafter, three patterns of temporal community changes were observed: seed bank species persisted in EG, and in OG and CG forest development proceeded or community structure did not change greatly. Conclusion: Pre‐eruption topsoil contributed to revegetation by the supply of seed bank and nutrients in the earliest stages, but resulted in the delay of forest development due to the persistence of seed bank species. Plant community divergence was driven by the persistence of earlier colonists.  相似文献   

6.
The capacity of seedlings to survive for extended periods beneath intact forest increases the likelihood of regeneration of many species of canopy trees in rainforests. I studied the demographics of Argyrodendron actinophyllum (F.M.Bail.) H.L.Edlin seedlings in a subtropical rainforest in northern New South Wales. A mast seeding of A. actinophyllum was observed and subsequent survival of seedlings monitored over a four year period. Densities of seedlings that emerged correlated with seedfall, while seedfall depended on the size and distance to the surrounding trees. Mortality of seedlings showed density-dependence at higher seedling densities (above about 100 seedlings m?2), apparently in response to browsing pressure that varied with the density of seedlings. Seedlings that were protected from vertebrates by exclosure cages had lower mortality rates than unprotected seedlings and showed no density response. Glasshouse experiments showed seedling growth was reduced by defoliation, light intensity and initial seed weight, and that seedlings could not persist at light intensities below about 1% ambient, which occur in darker patches on the forest floor. Possible mechanisms whereby the observed spatial and temporal patterns of seedling recruitment could reduce the likelihood of the species becoming more common relative to other tree species in the forest are discussed.  相似文献   

7.
The planting of non‐timber forest products (NTFPs) in the understory of tropical forests is promoted in many regions as a strategy to conserve forested lands and meet the economic needs of rural communities. While the forest canopy is left intact in most understory plantations, much of the midstory and understory vegetation is removed in order to increase light availability for cultivated species. We assessed the extent to which the removal of vegetation in understory plantations of Chamaedorea hooperiana Hodel (Arecaceae) alters understory light conditions. We also examined how any changes in light availability may be reflected by changes in the composition of canopy tree seedlings regenerating in understory plantations. We employed a blocked design consisting of four C. hooperiana plantation sites; each site was paired with an adjacent, unmanaged forest site. Hemispherical canopy photographs were taken and canopy tree seedlings were identified and measured within 12 3 × 2 m randomly placed plots in each site for a total of 96 plots (4 blocks × 2 sites × 12 plots). Plantation management did not affect canopy openness or direct light availability but understory plantations had a higher frequency of plots with greater total and diffuse light availability than unmanaged forest. Comparisons of canopy tree seedling composition between understory plantations and unmanaged forest sites were less conclusive but suggest that management practices have the potential to increase the proportion of shade‐intolerant species of tree seedlings establishing in plantations. Given the importance of advanced regeneration in gap‐phase forest dynamics, these changes may have implications for future patterns of succession in the areas of forest where NTFPs are cultivated.  相似文献   

8.
《农业工程》2021,41(4):259-284
Diversity, stand structure and regeneration potential are the key elements of any forest ecosystem. For the present study, seven sites were selected with the aims of assessing plant diversity, structure and regeneration potential in tropical forests across Kanyakumari Wildlife Sanctuary (KWLS), Western Ghats, India. The sites were classified based on the similarity: tropical dry deciduous sites (TDDs I and II), tropical semi-evergreen sites (TSEs I and II) and tropical evergreen sites (TEFs I-III). The phytosociological survey was done by laying a total of 70 plots (10 plots in each study site). Standard methods were followed for the assessment of diversity, structure and regeneration patterns. A total of 267 species (205 genera, 70 families) were recorded. The tree species richness ranged 24 (TDD II) – 76 (TEF III). Of the vegetation spectrum, trees, vines and understorey accounted 56.5, 15.3 and 28.2% respectively to the total flora documented. A total of 66 species were endemic. The total tree density and tree basal area (seedlings, saplings, juveniles and adults) were 18,790 individuals (mean 2684) and 137.6 m2 (mean 19.7 m2) in 70 plots respectively. The mean tree adult density and basal area ranged 370 (TDD I) – 900 (TEF I) individuals/ha and 24.2 (TDD I) – 75.3 (TEF III) m2/ha respectively. The overall species richness was highest in TDD I, but TEF III had the highest tree species richness. The diameter class-wise distribution showed the characteristic ‘reverse J-shaped’ curve. Most tree species were ‘newly recruited’. The dominant species had ‘fair’ to ‘good’ regeneration potential. However, 12 tree species showed ‘no’ regeneration. The overall regeneration pattern of trees was ‘good’, but ‘no’ or ‘poor’ regeneration patterns in some tree species, especially endemics is a point of concern. Since a majority of tree species were ‘new recruits’, species composition may likely change in the future. The results obtained would help in understanding diversity patterns, structural attributes and regeneration potential in tropical forests of protected areas for better forest management and conservation.  相似文献   

9.
【目的】研究大面积栽植外来树种日本落叶松和日本花柏对鄂西北森林群落物种多样性的影响,为评价外来树种的入侵风险提供依据。【方法】采用样地调查法对比研究外来树种日本落叶松和日本花柏人工林与当地森林群落特征差异。【结果】日本落叶松人工林样地林下植物种类丰富,样地平均物种数与当地天然林样地物种数相比无显著差异;林下灌木层和草本层多样性指数较高,草本层多样性指数与当地天然林相比无显著差异;林下未发现日本落叶松的更新苗。日本花柏人工林样地平均物种数显著少于当地其他人工林样地;乔木层、灌木层和草本层的4个多样性指数值均小于当地其他人工林样地;在3个样地中出现日本花柏更新苗,更新苗数量达479株·hm~(-2)。【结论】引种栽培日本落叶松不会导致当地森林群落的物种多样性降低,不会引起生物入侵风险;但引种栽培日本花柏会明显降低当地森林群落的物种多样性,对当地森林生态系统的稳定构成一定威胁。  相似文献   

10.
Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non‐native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m a.s.l.; precipitation approximately 2770 mm yr?1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum‐dominated herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using non‐parametric H‐tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger‐dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure.  相似文献   

11.
The coexistence of plant species in species‐rich tropical forests can be promoted by specialised enemies acting in a negatively density‐dependent manner. While survival of tropical tree seedlings is often negatively density‐dependent, the causes have rarely been identified. We tested whether insects and plant pathogens cause density‐dependent seedling recruitment and survival in five forest tree species in Belize, Central America. We manipulated densities of seeds or newly germinated seedlings in small (1 m2 or 0.25 m2) plots close to fruiting conspecific trees. Using a factorial design, we excluded enemies from subsets of the plots with fungicides and insecticides. Seed germination (for two species) and early seedling survival (for all species) were monitored at approximately weekly intervals for up to eight weeks, during the period when plants are likely to be most susceptible to natural enemies. In Terminalia amazonia, seed germination was negatively density‐dependent and the proportion of seeds germinating increased when insects were excluded. However, the magnitude of the insecticide effect was independent of density. The only significant density effect for survival of young seedlings was in Acacia polyphylla; counter to expectation, seedling survival was higher at high densities. In a few cases pesticide application had a significant effect on seedling survival, but in only one case (Terminalia amazonia) was a significant pesticide × density interaction detected. Our results caution against generalising from studies conducted on a single species at a single time and place and illustrate the challenges of experimentally testing for enemy‐mediated negative density‐dependence. Experimental outcomes are likely to depend on the spatial scale at which the principal enemies disperse and respond to plant density, and the timescales over which they act. Gathering information on these variables will improve our understanding of the natural histories of tropical forest species and help inform the design of future experiments.  相似文献   

12.
The effects of reduced‐impact logging (RIL) on the regeneration of commercial tree species were investigated, as long‐term timber yields depend partly on the availability of seedlings in a managed forest. On four occasions during a 20‐month period in the Tapajós National Forest (Eastern Amazon, Brazil), seven commercial tree species were assessed as follows: the long‐lived pioneers Bagassa guianensis and Jacaranda copaia; the partially shade‐tolerant Hymenaea courbaril, Dipteryx odorata, and Carapa guianensis; and the totally shade‐tolerant Symphonia globulifera and Manilkara huberi. In 2439 10 × 10 m plots, all individuals < 20 cm diameter at breast height (dbh) were assessed over three intervals, before, during, and after the forest being logged. Before logging, the density of seedlings and saplings of the seven species did not change. Logged trees were spatially aggregated, with 9.2 percent of the plots being heavily impacted by logging. After logging, the recruitment rate increased more than the mortality rate, so that post‐harvesting densities of seedlings and saplings increased. The increase in density was concentrated in logged plots with more disturbances. It is concluded that post‐harvesting heterogeneity of micro‐environments created by RIL may be an important component to be taken into account for sustainable forest management and conservation of commercial species.  相似文献   

13.
ABSTRACT Edge effects along tropical forest–pasture margins are thought to cause a shift toward early successional characteristics of the understory forest vegetation. We tested this idea by sampling vegetation at five forest sites in northeast Costa Rica each of which had edges that were established over 20 yr earlier. Four of these sites had been selectively logged. We sampled woody plants >0.2 and ≤1.3 m height in 54 m2 within 0.2 ha plots at edges (N=14), and at 150 m (N=11) and 300 m from edges (N=9). Composition and diversity did not vary with edge distance. Abundance of tree regeneration, mainly of canopy and emergent species, increased at edges. Abundance of lianas and slow‐growing tree species did not differ significantly across the sampling locations. Weighted mean wood density varied little, with a reduction at edges for canopy species. Palms were less abundant at edges, but not less species rich. At edges, these plant assemblages maintain many of the characteristics of forest interior vegetation, though the changes observed may indicate ongoing functional change. Degradation of forest–pasture edges is not a universal feature of tropical forest fragmentation, and forests with high rates of natural turnover might have a high capacity to maintain themselves within forest edges alongside pasture.  相似文献   

14.
Zobel  Donald B.  Antos  Joseph A.  Fischer  Dylan G. 《Plant Ecology》2022,223(4):381-396

Several processes bury plants, but sediment can also be subsequently removed, often by delayed erosion. Thus, the ability to survive multiple years of burial and to respond when released are important to vegetation changes and population dynamics. We experimentally evaluated the effects of delayed removal of tephra (aerially transported volcanic ejecta) in an old-growth forest understory near Mount St. Helens, using 1-m2 plots assigned to three treatments: tephra removed 4 months after deposition (50 plots), tephra removed 28 months after deposition (the delayed erosion treatment, 50 plots), and undisturbed, natural tephra (100 plots). Prior to tephra removal, species density, cover, shoot density, and shoot size in the delayed erosion treatment were all similar to values in natural plots and significantly less than values in plots cleared initially, indicating that 24 months of additional burial adversely affected understory plants. However, all attributes eventually approached pre-eruption values for shrubs and herbs, indicating that erosion greatly facilitated vegetation recovery. Responses varied substantially among species and growth forms. Overall, our experimental results indicate that some plants of most species can respond effectively after release from burial of at least three growing seasons. In addition, the delay of erosion retards ecosystem recovery relative to early erosion, facilitates recovery relative to no erosion, and modifies the trajectory of post-disturbance vegetation change.

  相似文献   

15.
Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm−3) was significantly lower than in primary forest plots (0.71 g cm−3), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.  相似文献   

16.
We tested four reforestation techniques in tropical forest fragments that were damaged by fire in upland Madagascar. We conducted a full‐factorial experiment on the survival of transplanted seedlings of five native tree species in grassland plots adjacent to the forest fragments in the Ambohitantely Forest Reserve. The species studied were Dodonaea madagascariensis, Filicium decipiens, Olea lancea, Podocarpus madagascariensis, and Rhus taratana. A total of 480 seedlings were planted; 207 survived the 15 months of the experiment. The factors examined were distance of the reforestation plots from the forest, mixing of forest soil into the plots, application of chemical fertilizers, experimental shading of plots, and the cover of naturally establishing shrubs. Both increasing the distance of plots from the forest edge and adding chemical fertilizers significantly reduced the survival of all seedlings. The surprising negative effects of fertilization may be partly due to increased competition from naturally establishing shrubs that are adapted to exploit high nitrogen levels. Mixing soil from the forest areas into the plots did not change seedling survival. Shading reduced the survival of D. madagascariensis seedlings and did not increase the survival of any species. These findings suggest that the success of reforestation projects can be increased by planting seedlings close to the existing forest fragments. Reforestation of similar tropical forests is likely to be more successful if efforts are focused on expanding the size of existing fragments of tropical forest, rather than on establishing new fragments in grassland openings.  相似文献   

17.
The disappearance of frugivorous primates in fragmented forests can potentially lower the rates of seed dispersal and recruitment of endozoochorous tree species, thus altering plant community structure. We quantified seedling density for 7 tree species that are common in the feces of mantled howlers (Alouatta palliata) in 6 rain forest fragments in northern Chiapas, Mexico. Howlers were present in 3 of the fragments and absent in the other 3. We compared seedling density in primate sleeping sites in inhabited fragments with control sites, which were structurally similar to sleeping sites but where we did not find monkey feces, in both inhabited and uninhabited fragments. For each tree species, we determined the relationship between seedling density and the local density of seeds and adult trees. In fragments where howlers were present, seedling density for 4 of the focal tree species (Brosimum alicastrum, Dialium guianense, Manilkara zapota, and Nectandra ambigens) was greater in sleeping sites than in control sites found in the same fragments. Moreover, seedling density of Dialium guianense was greater in the control sites of fragments inhabited by howlers than in fragments where this primate is absent. Seedling density of these 4 species correlates positively with seed density on the forest floor; however, we observed no correlations between seedling density and the density of adult trees. Our results suggest that the diversity of the seedling community of tree species dispersed by howlers may decline in fragments where this seed disperser is absent. These findings, together with the fact that only 5% of the study region is currently covered by forest and 81% of the forest remnants are uninhabited by mantled howlers, suggest that the potential long-term recovery of associated populations of tropical tree species dispersed by this primate species is highly uncertain. Conservation and restoration efforts should be aimed at restoring or replacing the ecological role played by this important seed disperser in the region.  相似文献   

18.
Canopy‐top leaves of the dominant tree species from two 0.96‐ha plots in Brunei, northern Borneo, were sampled for structural and chemical analysis. Thirteen species from the mixed dipterocarp forest at Andulau and 14 from the lowland heath forest at Badas were studied. The heath‐forest species had significantly thicker leaves and were lower in nitrogen and ash concentration than those from the mixed dipterocarp forest. There were no significant differences between the two species groups in leaf mass per unit area (LMA), leaf fracture toughness, carbon concentration, 813C, neutral detergent fiber concentration, sclerophylly index, and stomatal density. A significant negative correlation between %C and 813C was found for the species from the mixed dipterocarp forest, but not those from the heath forest. The degree of sclerophylly measured in physical terms overlapped between the two sites to a considerable degree; however, all six species tested that were present in both plots had higher leaf fracture toughness in the heath forest. The possible reasons for the marked sclerophylly in the mixed dipterocarp forest are discussed.  相似文献   

19.
The Sulawesi red-knobbed hornbill (Aceros cassidix) is a large-bodied, frugivorous bird that nests in high densities in the Tangkoko-DuaSudara Nature Reserve, North Sulawesi, Indonesia. I measured seedling abundance and species richness, diversity, and dominance in plots placed below and immediately behind 20 active nest sites to evaluate the role of red-knobbed hornbills as agents of seed dispersal. Comparisons of treatment (below nests) and control plots (behind nests) show that hornbills affect the abundance and distribution of diet-species seedlings. Nondiet and nest tree seedlings did not differ between control and treatment plots suggesting that differences in diet species were the result of additional input by hornbills rather than by random or other dispersal events. Significantly greater numbers of diet seedlings germinated below nests, and the diversity of diet species was greater than that of nondiet species. Dominance of a few species in the treatment plots is consistent with the hypothesis that hornbills are effectively dispersing seeds of some, but not all, of their diet species. Although seedlings under nests may eventually experience density-dependent mortality, seedlings survived at least 12 months, indicating that red-knobbed hornbills were effectively dispersing seeds and influencing the initial fate of seeds of several tropical forest tree species.  相似文献   

20.
Abstract. A quantitative study of relationships between forest pattern and environment in the central North Island, New Zealand, is based on forest composition data from ca. 2000 existing plots distributed throughout the forests of the region. Estimates of mean annual temperature, rainfall, and solar radiation are derived for each plot from mathematical surfaces fitted to climate station data. Estimates of the depth of the last major rhyolitic eruption, (Taupo Pumice, ca. 130 AD) are derived from isopach maps. A classification procedure is used to identify broad compositional groups. Generalised linear models are used to examine relationships between major species and climatic and other physical factors. Significant relationships are identified between the distributions of both plot groups and species, and climate, vulcanism, topography and drainage. Among these factors, temperature and/or solar radiation are indicated as major determinants of the regional forest pattern, with rainfall, topography, and drainage acting at a secondary level. The role of the Taupo Pumice eruption is more difficult to interpret, and its effects seem to have been greatly influenced by topography. Deep extensive deposits of tephra on flat-to-rolling sites close to the eruption centre have probably favoured the current dominance of these sites by more rapidly dispersing conifers. In contrast, on adjacent steep sites where forest destruction was likely to be less severe, slow-dispersing Nothofagus species are largely dominant. Further work is needed to understand the factors favouring conifer dominance of the central basins and the degree to which Nothofagus species might expand their range in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号