首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Phytoestrogens, or naturally occurring estrogen-mimicking compounds, are found in many human plant foods, such as soybeans (Glycine max) and other legumes. Because the consumption of phytoestrogens may result in both health benefits of protecting against estrogen-dependent cancers and reproductive costs of disrupting the developing endocrine system, considerable biomedical research has been focused on the physiological and behavioral effects of these compounds. Despite this interest, little is known about the occurrence of phytoestrogens in the diets of wild primates, nor their likely evolutionary importance. We investigated the prevalence of estrogenic plant foods in the diets of two folivorous primate species, the red colobus monkey (Procolobus rufomitratus) of Kibale National Park and mountain gorilla (Gorilla beringei) of Bwindi Impenetrable National Park, both in Uganda. To examine plant foods for estrogenic activity, we screened 44 plant items (species and part) comprising 78.4% of the diet of red colobus monkeys and 53 plant items comprising 85.2% of the diet of mountain gorillas using transient transfection assays. At least 10.6% of the red colobus diet and 8.8% of the gorilla diet had estrogenic activity. This was mainly the result of the red colobus eating three estrogenic staple foods and the gorillas eating one estrogenic staple food. All estrogenic plants exhibited estrogen receptor (ER) subtype selectivity, as their phytoestrogens activated ERβ, but not ERα. These results demonstrate that estrogenic plant foods are routinely consumed by two folivorous primate species. Phytoestrogens in the wild plant foods of these two species and many other wild primates may have important implications for understanding primate reproductive ecology.  相似文献   

2.
Phytochemical or nutrient analyses of primate diets have revealed clues to their food selection in a single species. On the other hand, few interspecific comparisons of phytochemical or nutrient composition of primate diets have been made, although diets are considered to differ in phytochemical or nutrient content from primate species to species, since different species have different body weights and different morphological and physiological characteristics. I compared the nutrient content of diet between patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus) living sympatrically in Cameroon. Patas subsisted on a smaller number of food items, most of which were also tantalus food items. Then, I compared the protein–fiber ratio and the available energy content of the food items eaten by patas (patas foods) with those items eaten only by tantalus (tantalus foods). Both variables were higher in patas than tantalus foods, although there was no significant difference in available energy of plant foods. Next, when I performed discriminant analysis for patas foods and tantalus foods, employing the above two variables, a discriminant function with positive coefficients for both variables was obtained. The mean discriminant-function score of patas foods was higher than that of tantalus foods. Despite being somewhat larger in weight, patas selectively fed on a smaller number of foods of higher quality than did tantalus. I discuss why the results are inconsistent with a well known body weight–diet relationship (Jarman–Bell principle). Energy-efficient locomotion enables patas to exploit not only small dispersed food items of high quality but also areas where high-quality foods are distributed in clumps. Electronic Publication  相似文献   

3.
Within a primate species, diet can be highly variable in composition, even at small spatial scales within the same forest, or temporally, suggesting that primates use different plant species and parts to meet similar nutritional needs. To test whether such differences in the plant species and parts that primates eat affects the nutrient concentrations that they obtain, we observed feeding of seven groups of red colobus monkeys ( Procolobus rufomitratus) residing in Kibale National Park, Uganda. The different groups consumed mostly young leaves from many of the same plant species, but spent different amounts of time feeding on them. As protein and fibre are suggested to be important determinants of colobine food choice and abundance, we analysed multiple samples of 47 food species for protein and fibre. Despite the differences in the plant species and parts eaten, the protein and fibre concentrations for the seven red colobus groups were similar. Our results suggest that colobus monkeys eating diets with differing amounts of species and parts may ultimately receive similar concentrations of nutrients.  相似文献   

4.
Generalist primates eat many food types and shift their diet with changes in food availability. Variation in foods eaten may not, however, match variation in nutrient intake. We examined dietary variation in a generalist‐feeder, the blue monkey (Cercopithecus mitis), to see how dietary food intake related to variation in available food and nutrient intake. We used 371 all‐day focal follows from 24 adult females (three groups) in a wild rainforest population to quantify daily diet over 9 months. We measured food availability using vegetation surveys and phenology monitoring. We analyzed >700 food and fecal samples for macronutrient content. Subjects included 445 food items (species‐specific plant parts and insect morphotypes) in their diet. Variation in fruit consumption (percentage of diet and total kcal) tracked variation in availability, suggesting fruit was a preferred food type. Fruits also constituted the majority of the diet (by calories) and some fruit species were eaten more than expected based on relative availability. In contrast, few species of young leaves were eaten more than expected. Also, subjects ate fewer young leaves (based on calories consumed) when fruit or young leaves were more available, suggesting that young leaves served as fallback foods. Despite the broad range of foods in the diet, group differences in fiber digestibility, and variation that reflected food availability, subjects and groups converged on similar nutrient intakes (grand mean ± SD: 637.1 ± 104.7 kcal overall energy intake, 293.3 ± 46.9 kcal nonstructural carbohydrate, 147.8 ± 72.4 kcal lipid, 107.8 ± 12.9 kcal available protein, and 88.1 ± 17.5 kcal structural carbohydrate; N = 24 subjects). Thus, blue monkeys appear to be food composition generalists and nutrient intake specialists, using flexible feeding strategies to regulate nutrient intake. Findings highlight the importance of simultaneously examining dietary composition at both levels of foods and nutrients to understand primate feeding ecology.  相似文献   

5.
In the wild, primate foraging behaviors are related to the diversity and nutritional properties of food, which are affected by seasonal variation. The goal of environmental enrichment is to stimulate captive animals to exhibit similar foraging behavior of their wild counterparts, e.g. To extend foraging time. We conducted a 12-month study on the foraging behavior of Japanese macaques in a semi-naturally forested enclosure to understand how they use both provisioned foods and naturally available plant foods and what are the nutritional criteria of their consumption of natural plants. We recorded time spent feeding on provisioned and natural plant foods and collected the plant parts ingested of their major plant food species monthly, when available.We conducted nutritional analysis (crude protein, crude lipid, neutral detergent fiber-'NDF', ash) and calculated total non-slructural carbohydrate - 'TNC' and total energy of those food items. Monkeys spent 47% of their feeding time foraging on natural plant species. The consumption of plant parts varied significantly across seasons. We found that leaf items were consumed in months when crude protein, crude protein-to-NDF ratio, TNC and total energy were significantly higher and NDF was significantly lower, fruit/nut items in months when crude protein and TNC were significantly higher and crude lipid content was significantly lower, and bark items in months when TNC and total energy were higher and crude lipid content was lower. This preliminary investigation showed that the forested enclosure allowed troop members to more fully express their species typical flexible behavior by challenging them to adjust their foraging behavior to seasonal changes of plant item diversity and nutritional content, also providing the possibility for individuals to nutritionally enhance their diet.  相似文献   

6.
Food patch visitation was compared to the availability of fruit patches of different species during 2 years in a Bornean lowland forest to examine orangutan (Pongo pygmaeus) diet selectivity. Feeding on both the pulp and the seeds of nonfig fruit varied directly with fruit patch availability, demonstrating preference for these foods over fig fruit or other plant parts (bark or leaves). Factors determining fruit selectivity rank were examined through multiple regression analysis. Modeling selectivity for 52 chemically unprotected primate-fruit pulp species revealed strong preferences for species of (i) large crop size (numbers of fruits ripening in an individual patch), (ii) high pulp weight/fruit, and (iii) high pulp mass per swallowed unit of pulp + seed, demonstrating orangutan sensitivity especially to patch size (g of pulp or total energy/patch) and perhaps to fruit handling time. Modeling selectivity for 18 fig species showed that 4 factors significantly influenced fig species rank: crop size, pulp weight/fruit, and 2 chemical variables, percentage digestible carbohydrate and percentage phenolic compounds in the fig fruit pulp. The selectivity rank based on the overall nutrient gain from feeding in the fruit patch (the product of the first 3 variables) is proportionally depressed by the percentage tannin content, demonstrating that orangutans integrate values for these variables in selecting fig patches. The conclusions from these results and from analysis of selectivity for seeds and for other fruit types are that orangutan foraging decisions are strongly influenced by the meal size expected from a feeding visit (i.e., by patch size), that tannins and other toxins deter feeding, and that the energy content, rather than the protein content, of foods is important in diet selection. The foraging strategy of orangutans is interpreted relative to these results and to Bornean fruiting phenology. By integrating spatial, morphometric, and chemical variables in analysis, this study is the first to demonstrate the application of foraging theory to separate out the key variables that determine diet selection in a primate. Multivariate analysis should routinely be applied to such data to distinguish among the many covarying attributes of food items and patches; inferences drawn in previous studies of primate diet selection, which ignore key spatial and morphological variables and rely on univariate correlations, are therefore suspect.  相似文献   

7.
Foods eaten by gorillas (Gorilla beringei) in Bwindi Impenetrable National Park (BINP), Uganda, were analyzed for their nutrient content. The goal of the study was to assess the amounts of fiber, protein, and sugars in the foods eaten by the Bwindi gorillas, and to determine whether condensed tannins and cyanide are present in these foods. A total of 127 food plant parts representing 84 plant species eaten by two groups of Bwindi gorillas were collected, processed, and analyzed for their chemical contents. The Bwindi gorilla ate foods that contain 2-28% crude protein (CP), 21-88% neutral detergent fiber (NDF), 14-60% acid detergent fiber (ADF), 2-42% acid detergent lignin (ADL), and 相似文献   

8.
When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology.  相似文献   

9.
Low micronutrient intake is implicated in a diversity of human health problems, ranging from problems associated with food insufficiency to those associated with food over-consumption. Humans are members of the order primates, suborder anthropoidea, and are most closely related to the great apes. Humans and apes are remarkably similar biologically. In the wild, apes and monkeys consume diets composed largely of plant foods, primarily the fruits and leaves of tropical forest trees and vines. Considerable evidence indicates that the ancestral line giving rise to humans (Homo spp.) was likewise strongly herbivorous (plant-eating). The wild plant parts consumed by apes and monkeys show moderate to high levels of many minerals and vitamins. The estimated daily intake of specific minerals, vitamin C and some other vitamins by wild primates is often quite high in comparison to intake levels of these same micronutrients recommended for humans. Are the high micronutrient intakes of wild primates simply a non-functional, unavoidable by-product of their strongly plant-based diets or might they actually be serving important as yet undetermined immunological or other beneficial functions? A better understanding of the basis for this apparent difference between humans and wild primates could help to clarify the range and proportions of micronutrients best suited for optimal human development, health and longevity.  相似文献   

10.
Many studies have examined the proportion of time that primates devote to feeding on various types of food, but relatively little is known about the intake rates associated with each food. However, the nutritional consequences of foraging can only be interpreted by comparing nutrient intakes with estimated nutrient requirements. The energy available to primates from ingested foods will depend both on the composition of the food and the extent to which various constituents, including fibre fractions, are digested. Both human and non-human primates have relatively low requirements for protein as a consequence of slow growth rates, small milk yields and relatively dilute milk. Because the nutrient demands of growth and reproduction are spread out over time, it appears that primates do not need to seek out foods of particularly high nutrient density, except perhaps during weaning. Although food selection in some species of primates appears to be correlated with the protein concentration of foods, it is unlikely that high dietary protein levels are required, at least when foods of balanced amino acid composition (such as leaves) are included in the diet.  相似文献   

11.
The mechanical properties of plant foods play an important role in the feeding process, being one of many criteria for food acceptance or rejection by primates. One of the simplest justifications for this statement is the general finding that primates tend to avoid foods with high fiber. Although fiber is largely tasteless, odorless, and colorless, it imparts texture, a sensation in the mouth related to the physical properties of foods. All primates encounter such mechanical resistance when they bite into plant food, and studies on humans show that an incisal bite facilitates quick oral assessment of a property called toughness. Thus, it is feasible that primates make similar assessments of quality in this manner. Here, we review methods of measuring the toughness of primate foods, which can be used either for making general surveys of the properties of foods available to primates or for establishing the mechanisms that protect these foods from the evolved form of the dentition.  相似文献   

12.
Primate habitats are being transformed by human activities such as agriculture. Many wild primates include cultivated foods (crops) in their diets, calling for an improved understanding of the costs and benefits of crop feeding. We measured the macronutrient and antifeedant content of 44 wild and 21 crop foods eaten by chimpanzees (Pan troglodytes schweinfurthii) in a mosaic habitat at Bulindi, Uganda, to evaluate the common assertion that crops offer high nutritional returns compared to wild forage for primates. In addition, we analyzed 13 crops not eaten at Bulindi but that are consumed by chimpanzees elsewhere to assess whether nutritional aspects explain why chimpanzees in Bulindi ignored them. Our analysis of their wild plant diet (fruit, leaves, and pith) corresponds with previous chemical analyses of primate plant foods. Compared to wild food equivalents, crops eaten by the chimpanzees contained higher levels of digestible carbohydrates (mainly sugars) coupled with lower amounts of insoluble fiber and antifeedants. Cultivated fruits were relatively nutritious throughout the ripening process. Our data support the assumption that eating cultivated foods confers energetic advantages for primates, although crops in our sample were low in protein and lipids compared to some wild foods. We found little evidence that crops ignored by the chimpanzees were less nutritious than those that they did eat. Nonnutritional factors, e.g., similarity to wild foods, probably also influence crop selection. Whether cultivated habitats can support threatened but flexible primates such as chimpanzees in the long term hinges on local people’s willingness to share their landscape and resources with them.  相似文献   

13.
Agricultural expansion encroaches on tropical forests and primates in such landscapes frequently incorporate crops into their diet. Understanding the nutritional drivers behind crop-foraging can help inform conservation efforts to improve human-primate coexistence. This study builds on existing knowledge of primate diets in anthropogenic landscapes by estimating the macronutrient content of 24 wild and 11 cultivated foods (90.5% of food intake) consumed by chimpanzees (Pan troglodytes verus) at Bossou, Guinea, West Africa. We also compared the macronutrient composition of Bossou crops to published macronutrient measures of crops from Bulindi, Uganda, East Africa. The composition of wild fruits, leaves, and pith were consistent with previous reports for primate diets. Cultivated fruits were higher in carbohydrates and lower in insoluble fiber than wild fruits, while wild fruits were higher in protein. Macronutrient content of cultivated pith fell within the ranges of consumed wild pith. Oil palm food parts were relatively rich in carbohydrates, protein, lipids, and/or fermentable fiber, adding support for the nutritional importance of the oil palm for West African chimpanzees. We found no differences in the composition of cultivated fruits between Bossou and Bulindi, suggesting that macronutrient content alone does not explain differences in crop selection. Our results build on the current understanding of chimpanzee feeding ecology within forest-agricultural mosaics and provide additional support for the assumption that crops offer primates energetic benefits over wild foods.  相似文献   

14.
It has been shown that differences in resource density and nutrient supply affect variation in ranging patterns, habitat use, and sociality. Among nonhuman primates, chimpanzees (Pan troglodytes) and bonobos (P. paniscus) have often been used as models for the link between social system and habitat ecology. Field reports suggest that resource density is higher in habitats occupied by bonobos (compared to chimpanzee habitats), and in the West (compared to the East) of the range of chimpanzees. In this study we compared diet quality at the level of species and populations using information from nutritional analyses of fruit and leaves consumed by chimpanzees (three) and bonobos (one population). Quality of plant foods was assessed on the basis of a) the concentration of macronutrients, fiber, and anti‐feedants, and b) associations of different nutrient components. Overall plant samples collected at each site differed in terms of macronutrient content. However, nutritious quality and gross energy content of food samples were similar suggesting that dietary quality reflects selectivity rather than habitat ecology. The quality of plant foods consumed by bonobos was within the range of chimpanzees and the quality of plant foods consumed by western chimpanzees was not higher than that of eastern chimpanzees. While the results showed significant variation across forests inhabited by Pan, they did not match with geographical patterns between and within Pan species as proposed in previous studies. This suggests that the nutritional quality of the habitat is not always a reliable predictor of the quality of the diet. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
To meet nutritional needs, primates adjust their diets in response to local habitat differences, though whether these dietary modifications translate to changes in dietary nutrient intake is unknown. A previous study of two populations of the mountain gorilla (MG: Gorilla beringei) found no evidence for intraspecific variation in the nutrient composition of their diets, despite ecological and dietary differences between sites. One potential explanation is that nutritional variability in primate diets requires greater ecological divergence than what was captured between MG sites, underpinning environmental differences in the nutrient quality of plant foods. To test whether Gorilla exhibits interspecific variation in dietary composition and nutrient intake, we studied the composition and macronutrients of the western gorilla (WG: Gorilla gorilla) staple diets and compared them with published data from the two MG populations. We recorded feeding time and food intake of four adult female WGs from one habituated group over a period of 11 months (December 2004–October 2005) at the Mondika Research Center, Republic of Congo, allowing for assessment of seasonal patterns of nutrient intake. Staple diets of WGs and MGs diverged in their dietary and macronutrient composition. Compared to MGs, the staple diet of WGs (by intake) contained higher proportions of fruit (43%) and leaf (12%) and a lower proportion of herb (39%), resulting in a higher intake of total nonstructural carbohydrate and fiber and a lower intake of crude protein. Staple gorilla fruits and herbs differed in nutrient quality between sites. Gorillas exhibit nutritional flexibility that reflects ecological variation in the nutrient quality of plant foods. Since dietary quality typically affects rates of growth and reproduction in primates, our results suggest that interspecific differences in nutrient intake and food quality may shape differences in gorilla nutrient balancing and female life history strategies.  相似文献   

16.
从行为生态学角度,依据黄山短尾猴食土行为在年龄、性别、社会等级序位、食土量、食土频率、食土持续时间中的分布和变化规律,结合土壤基本理化性质测定和分析,探讨了黄山短尾猴食土行为。黄山短尾猴对土壤的摄取是寻找和有目的的选择,有些场所是其"喜好"或"常去之处",食土场所通常是以多个体多次取食挖掘而形成的洞穴形式存在。取食土壤颜色黄色或黄棕色,酸性土壤,富含铁、钙、镁等矿物元素,粘土比例较高。社群各年龄段及性别个体均参与食土行为。平均食土行为持续时间在年龄和性别之间无显著差异;平均食土频率和食土量在成年雌性或雄性个体的社会等级序位之间无显著性差异;而成年雌性的平均食土频率和食土量,显著高于其它年龄或性别组,与雌性正值怀孕末期及产仔哺乳期,需要补充大量铁等矿物元素,以维持生理所需和体力消耗有关。典型的植食性动物黄山短尾猴有规律地取食粘土的行为,支持了食土行为具有"食物解毒作用"假说。人工投喂和食土行为的相关性表现为提高了食土频率,可能与粘土能够缓解高热量、低纤维人工食物造成的胃肠不适有关。  相似文献   

17.
Very little information exists on mineral nutrition of tropical, forest-dwelling species, yet minerals are critical to growth, reproduction, and survival. We examined the mineral resources available to and consumed by colobus in Kibale National Park, Uganda. We combined behavioral data on black-and-white (Colobus guereza) and red colobus (Piliocolobus tephrosceles) in a section of unlogged forest, a heavily logged area, and a forest fragment with mineral analysis of their foods to estimate the proportion of the diet containing specific minerals (mineral content). We compared mineral content of colobus foods (natural and crops) across plant parts and among plant species. Additionally, we estimated mineral intake of frugivorous primates in Kibale from published dietary data and our estimates of mineral content of foods. Dietary mineral content for all colobus groups and frugivorous species is similar despite significant differences in the mineral content of foods. Ripe and unripe fruits are lower in mineral content than most foods. Foods rarely consumed, such as bark, petioles, and caterpillars have high levels of some minerals. The mineral content of crops is low in comparison to that ofnatural foods. For all colobus groups of both species, sodium content of foods was extremely low and iron content was generally low, suggesting that intake isbelow suggested requirements, though current suggested iron requirements may overestimate physiological needs. Copper content was marginal and deficient seasonally for most colobus groups. Despite a sodium-limiting environment, only one of 8 colobus groups appeared to select sodium; however, this may be due to a lack of variation in sodium content among plant species and a positive correlation between high plant sodium content and secondary compounds. Despite the lack of selection for sodium by colobines, some behaviors point to a potential sodium deficiency, including urine drinking, consumption of high-sodium swamp plants, and use of mud-puddles.  相似文献   

18.
Deciphering the dietary habits of a species is central to understanding its ecology, resource requirements, and the evolution of its life history traits. Detailed information on how primates use their environment to address their nutritional needs is available for many primate species. Such basic, but necessary data are, however, fragmented for secretive primates, especially regarding direct behavioral observations of individuals. In this study, we evaluated the impact of seasonality and demographic characteristics on diet and feeding habits in the only free‐ranging population of habituated mandrills (Mandrillus sphinx), a forest‐dwelling species inhabiting the dense humid forests of Central Africa. We collected fine‐grained quantitative data on feeding behavior of 57 individually‐recognized animals of both sexes and different age classes during a 17‐month period. We identified most consumed plant species and determined their abundance in the habitat of the studied mandrills. We showed that diet in this species was extremely diverse and included approximately 150 different plant species, but also mushrooms, invertebrates, and vertebrates. This omnivorous and highly diverse diet presented, however, a clear frugivorous tendency. While we identified three food items largely consumed throughout the year, we also found a strong seasonal signature on diet that was partly, but not only, related to food availability. Age and sex also influenced feeding habits with some feeding specializations according to the individual categories considered and their associated nutritional needs. Our quantitative data provide a basis for future studies examining the nutritional and mineral content of food items, which will further elucidate important aspects of the ecology of this little studied forest primate.  相似文献   

19.
Much work has been done to further our understanding of the mechanisms that underlie the diversity of primate social organizations, but none has addressed the limits to that diversity or the question of what causes species to either form or not form social networks. The fact that all living primates typically live in social networks makes it highly likely that the last common ancestor of living primates already lived in social networks, and that sociality formed an integral part of the adaptive nature of primate origins. A characterization of primate sociality within the wider mammalian context is therefore essential to further our understanding of the adaptive nature of primate origins. Here we determine correlates of sociality and nonsociality in rodents as a model to infer causes of sociality in primates. We found sociality to be most strongly associated with large-bodied arboreal species that include a significant portion of fruit in their diet. Fruits and other plant products, such as flowers, seeds, and young leaves, are patchily distributed in time and space and are therefore difficult to find. These food resources are, however, predictable and dependable when their location is known. Hence, membership in a social unit can maximize food exploitation if information on feeding sites is shared. Whether sociality evolved in the primate stem lineage or whether it was already present earlier in the evolution of Euarchontoglires remains uncertain, although tentative evidence points to the former scenario. In either case, frugivory is likely to have played an important role in maintaining the presence of a social lifestyle throughout primate evolution.  相似文献   

20.
Most primates depend heavily on plant foods; thus their chemical composition is key to understanding primate ecology and evolution. One class of plant compounds of strong current interest are phytoestrogens, which have the potential to alter fertility, fecundity, and survival. These plant compounds mimic the activity of vertebrate estrogens, resulting in altered physiology and behavior. Here, we review what is known about phytoestrogens from an ecological and evolutionary perspective. Much of what is known about the effects of phytoestrogens on the endocrine system comes from research on human foods, especially soybeans (Glycine max). Two opposing perspectives have resulted from this research: 1) phytoestrogens provide health benefits, such as cancer prevention, or 2) phytoestrogens act as endocrine disruptors and threaten reproductive health. Studies of wild primates have only recently begun examining the presence of estrogenic plants in the primate diet and the effects of their consumption. Evidence that a number of primate species eat plants containing phytoestrogens and research documenting behavioral and hormonal effects of estrogenic plant consumption for red colobus monkeys (Procolobus rufomitratus) augment captive and laboratory studies to suggest that these compounds promote differential survival and reproduction. Although much debate is currently taking place over the role of phytoestrogens and other endocrine disruptors in human health issues and in threatening biodiversity, we argue that an ecological and evolutionary approach is needed to reach appropriate conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号