首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact spheroplasts, vesicles obtained from French-press lysates (chromatophores), and spheroplast-derived vesicles were isolated from photosynthetically grown cells of Rhodopseudomonas sphaeroides. Lysed spheroplasts showed specific activities of succinate, NADH, and l-lactate dehydrogenase which were eight-, six-, and seven-fold higher, respectively, than those of intact spheroplasts when ferricyanide was used as electron acceptor. Mg2+-ATPase activity of lysed spheroplasts, measured using an assay system coupled to the oxidation of NADH, was seven-fold higher than the activity of intact sheroplasts. Toluene-treated spheroplast-derived vesicles displayed higher succinate dehydrogenase (ferricyanide reduction) and Mg2+-ATPase activities than untreated vesicles whereas no differences were measured between untreated and toluene-treated chromatophores. However, NADH dehydrogenase (ferricyanide reduction) activities of both toluene-treated vesicles and chromatophores were higher than the activities of untreated vesicles and chromatophores. When chromatophores and spheroplast-derived vesicles were preincubated with trypsin, the l-lactate and succinate dehydrogenase activities of chromatophores were preferentially inactivated when phenazine methosulfate was used as electron acceptor. The data indicate that chromatophores are oriented in an opposite direction to the spheroplast-derived vesicles. At least 80% of the latter are oriented in a direction equivalent to the cytoplasmic membrane of intact cells and spheroplasts. Spheroplast-derived vesicles from cells grown with higher light intensities seem to be more uniformly oriented than those obtained from cells grown with lower light intensities.  相似文献   

2.
Purified B875 light-harvesting complex, chromatophores, and spheroplast-derived vesicles from wild-type Rhodobacter sphaeroides were treated with proteinase K or trypsin, and the alpha and beta polypeptides were analyzed by electrophoretic, immunochemical, and protein-sequencing methods. With the purified complex, proteinase K digested both polypeptides and completely eliminated the A875 peak. Trypsin digested the alpha polypeptide and reduced the A875 by 50%. Proteinase K cleaved the beta polypeptide of chromatophores and the alpha polypeptide of spheroplast-derived vesicles. Sequence analyses of polypeptides extracted from proteinase K-treated chromatophores revealed that the beta polypeptide was cleaved between amino acids 4 and 5 from the N terminus. The N terminus of the alpha polypeptide was intact. We concluded that the N terminus of the beta polypeptide is exposed on the cytoplasmic membrane surface, and the difference in the digestion patterns between the spheroplast-derived vesicles and chromatophores suggested that the C terminus of the alpha polypeptide is exposed on the periplasmic surface.  相似文献   

3.
The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Phosphatidylcholine-containing liposomes were mixed with chromatophores at pH 6.0 to 6.2, and the mixture was fractionated on discontinuous sucrose gradients into four membrane fractions with lipid-to-protein ratios that varied 11-fold. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.  相似文献   

4.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

5.
Plasma membrane vesicles obtained by density gradient centrifugation of bovine adrenal medullary homogenates were analyzed by electron microscopic methods, including negative staining, ultrathin sections and freeze-fracture replicas. Rapid freezing showed the intramembrane structure of plasma membrane vesicles to be distinct from that of other organelle membranes, such as chromaffin granules. Cytochemical demonstration of acetylcholinesterase (EC 3.1.1.7) activity on most membrane profiles confirmed that plasma membrane vesicles are derived predominantly from plasma membranes. About half of the plasma membrane vesicles were smaller than 0.15 micron and almost none larger than 0.55 micron. Practically all were composed of single shells. Most vesicles were impermeable to cytochemical markers of the size of Ruthenium red (Mr 800) and none were permeable to markers larger than 40 kDa. Surface charge probes, concanavalin A binding and endogenous actin decoration with heavy meromyosin indicated that the major fraction of plasma membrane vesicles is oriented right-side-out. A minor population with opposite orientation could also be detected. Isotonic ionic media caused vesicle aggregation in suspensions of plasma membrane vesicles and chromaffin granules. Freeze-fracturing always revealed clusters of membrane-intercalated particles at the sites of contact between aggregated membranes.  相似文献   

6.
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.  相似文献   

7.
In freeze-fractures of chromatophores of Rhodospirillum rubrum the reaction centers are seen as hexagonal arranged particles of 13 nm diameter with a density of around 5,500 particles per m2. Similar regions on the cytoplasmic membrane suggest that these parts are the prospective invagination sites.Isolated reaction centers are easily incorporated into liposomes. In freeze fractures of liposomes particles similar in shape and size, although less dense as in chromatophores are observed. In negative staining much smaller units of only 5 nm in diameter are found indicating that reaction centers occur in the membrane as tri- or tetramers. There is a strong correlation between particle density in chromatophores and titratable reaction centers remaining in these membranes after extraction of reaction centers by detergents; both values are in good agreement with the yield of reaction centers at a given detergent concentration.Abbreviations LDAO Lauryldimethylamine oxide - PF protoplasmic fracture face - EF exoplasmic fracture face  相似文献   

8.
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.  相似文献   

9.
SDS-purified porcine kidney (Na+ + K+)-ATPase was studied by thin-section and freeze-etch electron microscopy. Freeze-fracturing of resealed membrane fragments shows no difference in the distribution of intramembranous particles of approx. 9.0 nm in diameter between convex and concave fracture faces. However, two types of convex face are found: FA, which shows a rather smooth background with many intramembranous particles, and FB, which shows a textured background with very few or no intramembranous particles. Etching the fractured samples further reveals that FA faces are covered with many intramembranous particles, while the etched external faces (EA) are either irregularly granulated or reveal many particles half the size of intramembranous particles. FB faces are covered with distinct pits of 9 nm or larger. The etched external surfaces (EB) are covered with many particles of intramembranous particle size. These results suggest that there are two vesicle orientations in our resealed purified membrane preparation: right-side-out, as in vivo, and inside-out. The majority of the protein mass is distributed only on one side of the membranes. Right-side-out resealed membrane vesicles after fracturing and etching show particulated FA convex fracture faces and irregularly granulated or smooth etched EA surfaces, indicating that the FA face is the protoplasmic fracture face and that the majority of the protein mass of the (Na+ + K+)-ATPase is located on the cytoplasmic half of the membrane.  相似文献   

10.
Two fractions of membrane preparations, a heavy and a light one were isolated from mildly broken Rhodopseudomonas capsulata cells. The light fraction which contained vesicles similar to the regular chromatophores obtained by sonication and a heavy fraction which appeared in electron micrographs to consist of cell fragments which were designated as heavy chromatophores and were composed of broken cell envelopes containing closely packed vesicles enclosed within the cytoplasmic membrane. Both types of chromatophores catalyzed photophosphorylation. However, cytochrome c2 could be washed out only from the heavy chromatophores. Photophosphorylation activity which was lost by the removal of the cytochrome could be restored by addition of either cytochrome c2 or phenazine methosulphate. Light induced proton efflux in heavy chromatophores in contrast to proton influx in regular chromatophores. The washed heavy chromatophores did not lose the light induced proton movement. Light induced quenching of 9-aminoacridine and atebrin fluorescence in chromatophores, while the fluorescence was enhanced in the heavy chromatophores. The washing did not affect the fluorescence changes of the heavy chromatophores but caused a reduction of the steady state of the carotenoid absorbance shift. It is suggested that the membrane in the heavy chromatophores is oriented inside out with respect to the membrane in regular chromatophores. Cytochrome c2 which is attached to that side of the membrane facing the outside medium could be removed from the heavy chromatophors and reconstituted to them. The role of cytochrome c2 in photophosphorylation is discussed.  相似文献   

11.
Hepatitis A antigen (HAAG) was localized in liver tissue from marmosets inoculated with human hepatitis A virus (HAV) by light and electron microscopy by using a peroxidase-conjugated antibody method. The fine granular peroxidase staining was scattered throughout the cytoplasm of liver cells when viewed with the light microscope. The distribution of HAAg-positive cells was focal. Virus-like particles, 24 to 27 nm in diameter, were observed in the cytoplasm of hepatocytes and smaller cells, resembling Kupffer cells, by standard thin-section electron microscopy (thin section EM). By immunoperoxidase electron microscopy (immunoperoxidase EM), HAAg was detected on the particles, which were aggregated within cytoplasmic vesicles of the hepatocyte. The surrounding membrane of the vesicles was also HAAg- positive. Similar HAAg particles were observed in the cytoplasm of smaller cells adjacent to hepatocytes as well. Thus, immunoperoxidase EM revealed that the 24- to 27-nm virus-like particles in the cytoplasm of liver cells obtained from marmosets were infected with HAV contained HAAg.  相似文献   

12.
The application of freeze-cleave electron microscopy to whole cells of Escherichia coli revealed that the particles exposed on the resulting two inner membrane faces are asymmetrically distributed. This method can therefore be used to determine the orientation of membrane vesicles from E. coli. Membrane vesicles freshly prepared in potassium phosphate buffer (K(+)-vesicles) by osmotic lysis of spheroplasts consisted almost entirely of right-side-out vesicles. Their size suggested that each cell gives rise to one vesicle. When the membrane vesicles were subjected to one cycle of freezing and thawing, the number of inside-out vesicles rose to about 25%. However, due to the small size of most of the inside-out vesicles, these contribute only 2 to 3% of the total membrane surface area of the preparation. The inside-out vesicles appear to arise from infoldings of the membrane of right-side-out vesicles. They also accumulate within the latter, thus producing multivesicular membrane sacs. Na(+)-vesicles (vesicles prepared in sodium phosphate buffer) subjected to freezing and thawing appeared to lose structural rigidity more than did K(+)-vesicles. In contrast to the membrane vesicles prepared by the osmotic lysis of spheroplasts, those obtained by breaking intact cells by a single passage through a French pressure cell were uniformly very small (only 40 to 110 nm in diameter); approximately 60 to 80% were inside-out. To reconcile the polarity of the membrane vesicles with the enzymic activities of such preparations, we propose that "dislocation" of membrane proteins occurs during osmotic lysis of spheroplasts.  相似文献   

13.
Membrane events involved in myoblast fusion   总被引:3,自引:3,他引:0       下载免费PDF全文
Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle-free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is established between the cells. The fusion between the two plasma membranes appears to take place primarily within particle-free domains (probably phospholipid enriched), and cytoplasmic unilamellar, particle-free vesicles are occasionally associated with these regions. These vesicles structurally resemble phospholipid vesicles (liposomes). They are present in normal myoblasts, but they are absent in certain fusion-arrested myoblast popluations, such as those treated with either 5-bromo-deoxyuridine (BUdR), cycloheximide (CHX), or pospholipase C (PLC). The unilamellar, particle-free vesicles are present in close proximity to the plasma membranes, and physical contact is observed frequently between the vesicle membrane and the plasma membrane. The regions of vesicle membrane-plasma membrane interaction are characteristically free of intramembrane particles. A model for myoblast fusion is presented that is based onan interpretation of these observations. This model suggests that the cytoplasmic vesicles initiate the generation of particle-depleted membrane domains, both being essential components in the fusion process.  相似文献   

14.
Membrane structure of caveolae and isolated caveolin-rich vesicles   总被引:1,自引:1,他引:0  
 Caveolae are specialized invaginated domains of the plasma membrane. Using freeze-fracture electron microscopy, the shape of caveolae and the distribution of intramembrane particles (integral membrane proteins) were analyzed. The caveolar membrane is highly curved and forms flask-like invaginations with a diameter of 80–120 nm with an open porus of 30–50 nm in diameter. The fracture faces of caveolar membranes are nearly free of intramembrane particles. Protein particles in a circular arrangement surrounding the caveolar opening were found on plasma membrane fracture faces. For isolation of caveolin-enriched membrane vesicles, the method of Triton X-100 solubilization, as well as a detergent-free isolation method, was used. The caveolin-rich vesicles had an average size of between 100 and 200 nm. No striated coat could be detected on the surface of isolated caveolin-rich vesicles. Areas of clustered intramembrane particles were found frequently on membrane fracture faces of caveolin-rich vesicles. The shape of these membrane protein clusters is often ring-like with a diameter of 30–50 nm. Membrane openings were found to be present in the caveolin-rich membrane vesicles, mostly localized in the areas of the clustered membrane proteins. Immunogold labeling of caveolin showed that the protein is a component within the membrane protein clusters and is not randomly distributed on the membrane of caveolin-rich vesicles. Accepted: 16 September 1998  相似文献   

15.
ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS   总被引:13,自引:7,他引:6       下载免费PDF全文
A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.  相似文献   

16.
Remarkable differences among various membranes of bone cells became evident by examination of freeze-fracture replicas. In osteoclasts, three types of intramembranous particles (IMPs) were identified based on their size and shape: two sizes of isolated globular particles (8 and 12 nm in diameter) and rod-shaped, linear aggregates (8 x 30 nm in dimension). Furthermore, the density and distribution pattern of these IMPs enabled us to distinguish three different domains of membranes of osteoclasts including ruffled border, clear zone, and basolateral regions, as were also observed in thin sections. The highest density of IMPs was 3,500-4,000/microns2 in the ruffled border membrane, and these IMPs included linear aggregates among the usual globular particles. Linear aggregated particles were also observed in the membrane of cytoplasmic vesicles in the vicinity of the ruffled border region, but not in this membrane in other bone cells. In attached osteoclasts, the distribution patterns and densities of IMPs in each ruffled-finger and -plate were extremely variable, from closely to the loosely packed membrane particles. Focal aggregates of membrane particles were also frequently encountered. An important outcome of the present study was the finding that the presence of linear aggregated particles proved to be an additional criterion for distinguishing membrane domains in freeze-replicas of osteoclasts. The surface of the clear zone membrane was not smooth in profile, but revealed a number of eminences that were almost free of particles. Basolateral membranes exhibited a particle density of 2,400/microns2. Globular particles were homogeneously scattered in random fashion on their exposed fracture faces. In some cases, aggregates of IMPs on the basolateral membranes were encountered. In comparison with the ruffled fingers, microprojections from the basolateral surface showed a lesser density of IMPs and were devoid of rod-shaped or linear aggregated particles. Differences between osteoblasts and osteocytes were apparent in the density and the size of IMPs. The membranes of osteoblasts and osteocytes contained the same types of globular particles as seen in osteoclasts. Various sizes of gap junctions were located only on basolateral membranes of the osteoblasts. In contrast, no cellular junctions were observed between osteoclasts and any other type of cells.  相似文献   

17.
This study describes the distribution of an intrinsic membrane protein, the asialoglycoprotein receptor (ASGP-R) in the trans-Golgi reticulum and compartment of uncoupling receptor and ligand (CURL) of rat liver cells. Using quantitative immunogold electron microscopy and membrane length measurements, we showed lateral nonhomogeneity of receptors in the membranes of trans-Golgi reticulum and CURL, in particular in the membranes of secretory vesicles (identified by their content of albumin and very low density lipoprotein particles) and of CURL vesicles (endosomes), including multivesicular bodies. The characteristic tubulovesicular morphology of both sorting organelles defines the transition of receptor-rich tubular membrane and the receptor-poor limiting membrane of the attached vesicles. There was a direct relationship between the size of the secretory and CURL vesicles and the density of ASGP-Rs in their membranes. Receptor density in the smallest vesicles was similar to that found in adjacent continuous tubules. The larger the vesicles, the less receptor was detectable in their membranes. We propose that the receptor molecules are excluded from the vesicle membranes by dynamic lateral redistribution. Nonrandom receptor distribution in the CURL vesicle membranes was present even at the multivesicular body stage. These observations strongly suggest the existence of barriers to ASGP-R diffusion at the junctions of tubules and vesicles. In addition, our observations suggest that ASGP-Rs are transported to the plasma membrane via a mechanism other than the normal secretory pathway.  相似文献   

18.
Proteinase K was used to degrade membrane proteins exposed at the outer (cytoplasmic) and inner (periplasmic) surface of sealed, uniformly oriented chromatophore vesicles of Rhodobacter sphaeroides. Exclusive and controlled digestion of the chromatophore interior was achieved after Ca(2+)-induced fusion with large unilamellar phosphatidylglycerol liposomes containing microencapsulated enzyme. Reaction center subunit H, which served as a marker for the outer surface, was degraded to a slightly smaller product in chromatophores. This protein remained intact after liposome-chromatophore fusion, suggesting that the intermixing of lipid bilayers proceeded without significant leakage of the aqueous vesicle contents. In contrast, while cytochrome c1 was not affected in chromatophores, 70-75% was degraded within 60 min after liposome-chromatophore fusion. These results support an arrangement in which the bulk of this protein, including the mesoheme component and active site residues, faces the periplasmic side of the membrane. Although current functional models for the cytochrome bc1 complex predict that the Rieske iron-sulfur center interacts with cytochrome c1 in the periplasm, the iron-sulfur protein resisted proteolytic attack in the liposome-chromatophore fusion products under conditions that caused extensive degradation of cytochrome c1. Two cleavage products of the iron-sulfur protein were observed after the digestion of chromatophores, suggesting both a heterogeneity in the population of this protein and the exposure of at least part of its molecular mass to the cytoplasm.  相似文献   

19.
Surfaces of rod photoreceptor disk membranes: integral membrane components   总被引:8,自引:4,他引:4  
The membrane surfaces within the rod outer segment of the toad, Bufo marinus, were exposed by rapid-freezing followed by freeze-fracture and deep-etching. Platinum-carbon replicas of disk membranes prepared in this way demonstrate a distinct sidedness. The membrane surface that faces the lumen of the disk shows a fine granularity; particles of approximately 6 nm are packed at a density of approximately 30,000/micron 2. These dimensions suggest that the particles represent protrusions of the integral membrane protein, rhodopsin, into the intradisk space. In addition, when rhodopsin packing is intentionally perturbed by exhaustive digestion with phospholipase C, a concomitant change is observed in the appearance of the luminal surface granularity. The cytoplasmic surface of the disk rarely displays this rough texture; instead it exhibits a collection of much larger particles (8-12 nm) present at approximately 10% of the concentration of rhodopsin. This is about the size and concentration expected for certain light-regulated enzymes, cGMP phosphodiesterase and GTP-binding protein, which are currently thought to localize on or near the cytoplasmic surface of the disk. The molecular identity of the 8-12-nm particles will be identified in the following companion paper. A further differentiation of the cytoplasmic surface can be seen around the very edge, or rim, of each disk. This rim has relatively few 8-12- nm particles and instead displays short filamentlike structures connecting it to other membranes. These filaments extend between adjacent disks, across disk incisures, and from disk rims to the nearby plasma membrane.  相似文献   

20.
E Fehér  K Csányi  J Vajda 《Acta anatomica》1979,103(1):109-118
The nerve elements in the urinary bladder of the cat were studied by electron microscopy. According to their ultrastructure, nerve cell somata can be classified into three types: the large cells with a cytoplasm rich in organelles, several processes and numerous synaptic contacts on their surface; the cytoplasm contained 80- 120-nm granulated vesicles. The second type is poor in cytoplasmic organelles and has very few processes and virtually no synaptic contacts on the soma. The third type contains numerous large 160- to 220-nm 'neurosecretory' vesicles in the cytoplasm. According to the morphology of the vesicle population, four types of nerve processes could be distinguished: Type a, with a dominant population of small (40-60 nm) agranular vesicles. These are thought to be sacral parasympathetic fibres. Type b, with small (40-60 nm) granular vesicles, which may be the noradrenergic sympathetic fibres. Type c, with 80- to 120-nm granulated vesicles, probably of local origin. Typed d, with large 160- to 220-nm 'neurosecretory' vesicles also of local origin. Different types of nerve fibres are converging on the local nerve cells. This suggests that the local circuits can play an important role in coordinating the function of the bladder. Therefore, ganglia may be considered as an elementary functional unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号