首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Effects of phosphorus limitation on the physiological and biochemical changes of the freshwater bloom alga Microcystis aeruginosa Qutz. are reported in the present study. As a result of phosphorus limitation, biomass was controlled to some extent and the protein content per cell in vivo decreased. However,the carbohydrate content per cell was higher in phosphorus limitation over the 8d of cultivation. Soluble proteins were distinct in the media, whereas phosphorus deficiency induced the presence of a unique protein (16.2 kDa). Under conditions of phosphorus limitation, the activities of both superoxide dismutase and peroxidase per cell in vivo were lower than under normal conditions in the last cultivation. The in vivo absorption spectra of cells showed chlorophyll absorption peaks at 676 and 436nm, over 10nm red-shifted from the normal position; cells showed an absence of a chlorophyll c with an in viva absorption peak at 623nm and an extraction absorption peak at 617nm. The chlorophyll a/carotene and chlorophyll a/xanthophylls ratios decreased under conditions of phosphorus limitation, photosynthetic efficiency (Fv/Fm) was clearly lower, and the low-temperature fluorescence emission spectra indicated a higher peak at 683nm and a lower peak at 721nm relatively, with the 721nm peak drifting slightly to the red and the 683 nm peak strengthened with a weakened 692nm shoulder peak.  相似文献   

2.
Elymus nutans Griseb. is a typical important plant species in the alpine meadow of Qinghai-Tibetan plateau. To examine the effects of temperature elevation on its physiological and chemical characteristics, a simulation study was conducted in situ with open-top chambers (OTC) followed the method of International Tundra Experiment (ITEX) from November 2002 to September 2007, and these OTCs were designed five kinds of size with bottom diameters of 0.85, 1.15, 1.45, 1.75, 2.05 m so as to rise different air temperatures. The air temperature inside OTCs increased by 2.68, 1.57, 1.20, 1.07 and 0.69 °C with increase of OTC diameter compared with ambient air. We found that with increase of air temperature, the soluble sugar content and SOD (superoxide dismutase) activity in leaves of E. nutans increased first, and then decreased, whereas, the soluble protein content and GSH (Glutathione) content decreased first and increased then, the chlorophyll a and total chlorophyll contents were decreased, but the contents of chlorophyll b were higher than that of control. Increased temperature enhanced the above-ground biomass and blade height of E. nutans. These results indicated that elevated temperature had significant and complicated effects on physiological–biochemical characteristics of E. nutans on Qinghai-Tibet plateau, when the temperature increased within the range of 0.69–1.57 °C, it may have positive effects on plant growth and development, and E. nutans could adapt even develop defensive strategy to the changes of a certain ecological environment changes.  相似文献   

3.
Ren F  Zhou H K  Zhao X Q  Han F  Shi L N  Duan J C  Zhao J Z 《农业工程》2010,30(3):166-171
Elymus nutans Griseb. is a typical important plant species in the alpine meadow of Qinghai-Tibetan plateau. To examine the effects of temperature elevation on its physiological and chemical characteristics, a simulation study was conducted in situ with open-top chambers (OTC) followed the method of International Tundra Experiment (ITEX) from November 2002 to September 2007, and these OTCs were designed five kinds of size with bottom diameters of 0.85, 1.15, 1.45, 1.75, 2.05 m so as to rise different air temperatures. The air temperature inside OTCs increased by 2.68, 1.57, 1.20, 1.07 and 0.69 °C with increase of OTC diameter compared with ambient air. We found that with increase of air temperature, the soluble sugar content and SOD (superoxide dismutase) activity in leaves of E. nutans increased first, and then decreased, whereas, the soluble protein content and GSH (Glutathione) content decreased first and increased then, the chlorophyll a and total chlorophyll contents were decreased, but the contents of chlorophyll b were higher than that of control. Increased temperature enhanced the above-ground biomass and blade height of E. nutans. These results indicated that elevated temperature had significant and complicated effects on physiological–biochemical characteristics of E. nutans on Qinghai-Tibet plateau, when the temperature increased within the range of 0.69–1.57 °C, it may have positive effects on plant growth and development, and E. nutans could adapt even develop defensive strategy to the changes of a certain ecological environment changes.  相似文献   

4.
Polyethylene glycol (PEG 6000)-induced water deficit causes physiological as well as biochemical changes in plants. The present study reports on the results of such changes in hydroponically grown tomato plants (Lycopersicon esculentum Mill. cv. Nikita). Plants were subjected to moderate and severe levels of water stress (i.e. water potentials in the nutrient solution of- 0.51 and -1.22 MPa, respectively). Water stress markedly affected the parameters of gas exchange. Net photosynthetic rate (Pn) decreased with the induction of water stress. Accordingly, a decrease in the transpiration rate (E) was observed. The ratio of both (Pn/E) resulted in a decrease in water use efficiency. One of the possible reasons for the reduction in Pn is structural damage to the thylakoids, which affects the photosynthetic transport of electrons. This was indicated by an increase in non-photochemical quenching and a reduction in the quantum yield of photosystem Ⅱ. Furthermore, a decrease in both leaf water potential and leaf osmotic potential was observed, which resulted in a significant osmotic adjustment during stress conditions. Analysis of the physiological responses was complemented with a study on changes in proline content. In stressed plants, a 10-fold increase in proline content was detected compared with control plants. It is clear that water stress tolerance is the result of a cumulative action of various physiological and biochemical processes, all of which were affected by PEG 6000-induced water stress.  相似文献   

5.
It‘s common understanding that plant male sterility is closely related to cell ultrastructure or cell microstructure,plant physiological and biochemical metabolism during the generation and development of anthers. The materials used for the study were fertile and sterile anthers in various stages of a genic male-sterile rapeseed  相似文献   

6.
广东鼎湖山马尾松年轮元素含量及其相关性研究   总被引:1,自引:0,他引:1  
The concentrations of the elements in the annual rings of Pinus massoniana reflect the influence of both regional factors and species characteristics in absorbing,accumulating and distributing elements.The changes of environmental factors may result in concentration changes of elements in tree rings.Therefore,variations of tree ring element concentration may provide some clue in studying environmental changes.Some of eight elements studied are strongly correlated with others,the reason of which might be their similar structural and enzymatic functions in the plant cell,similar chemical properties and similar or opposite reaction to variations in some environment factors.  相似文献   

7.
8.
The physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to sudden changes in irradiance from high (HL) to low light (LL) and vice versa was studied by following parameters concerning growth rate, pigment, carbohydrate and protein cell contents. Applying first order kinetics, the specific acclimation rates for the parameters considered were calculated. During HL to LL shift, pigments increased to compensate for a reduction in growth irradiance in order to maintain relatively high growth rates, whereas carbohydrates decreased at the highest rate. The synthesis of phycobiliproteins proceeded at a rate similar or little higher than that of chlorophyll a, indicating their importance in the light harvesting at low irradiance. During LL to HL shift, carbohydrate biosynthesis was increased, whereas pigment and protein cell contents decreased. The kinetic analysis suggested that the pigment decrease could be accounted for both by dilution through growth and in vivo degradation. During this transition, the initially high cell pigment content gave rise to a very heavy carbohydrate synthesis, which for a short time, after the shift to HL conditions, overshot the final steady-state. In the same period the specific growth rate also increased notably, overshooting the μmax. The acclimation rates of the measured parameters were faster during LL to HL transition then during the reverse. The physiological response of A. maxima during the acclimation to sudden irradiance shifts points out the ability of this cyanobacterium to alter light harvesting and highlights again the key role of carbohydrates when the cells underwent an energy crisis during down-shift. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of arsenic (32 – 96 μM) on the phosphorus content and Chl fluorescence was studied in soybean (Glycine max Merril) grown in the nutrient solution with and without phosphorus. The increased concentration of As led to the decrease in P content in plant organs. Parameters of Chl fluorescence of soybean leaves in the presence of these As concentrations did not show significant changes.  相似文献   

10.
Plant peroxisomes play a key role in numerous physiological processes and are able to adapt to environmental changes by altering their content, morphology, and abundance. Peroxisomes can multiply through elongation, constriction, and fission; this process requires the action of conserved, as well as species-specific proteins. Genetic and morphological analyses have been used with the model plant Arabidopsis thaliana to determine at the mechanistic level how plant peroxisomes increase their abundance. The five-member PEXll family promotes early steps of peroxisome multiplication with an unknown mechanism and some subfamily specificities. The dynamin-related protein (DRP)3 subfamily of dynaminrelated large guanosine triphosphatases mediates late steps of both peroxisomal and mitochondrial multiplication. New genetic and biochemical tools will be needed to identify additional, especially plant-specific, constituents of the peroxisome multiplication pathways.  相似文献   

11.
研究了在梯度浓度Hg2+和Cd2+胁迫下,满江红(Azolla imbricata (Roxb.) Nakai)的叶绿素含量、叶绿素a/b比值、光合放氧速率、呼吸速率、抗氧化酶系(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD))和细胞超微结构受Hg2+和Cd2+的毒害影响.结果显示:随着胁迫程度的增大,叶绿素含量、叶绿素a/b比值、光合放氧速率明显下降,呼吸速率均在2 mg/L浓度下达到峰值,尔后下降; SOD、CAT、POD的活性均出现不同程度的应激性升高(除POD在Cd2+处理时下降),尔后下降.电镜观察发现,随着污染物浓度的增加和胁迫时间的延长,叶绿体出现膨大、破损和解体;线粒体嵴突膨胀和线粒体变形及空泡化;核染色质凝集,核仁消失,核膜破裂.实验结果表明: Hg2+和Cd2+污染不仅损害植物的生理活性,而且也破坏细胞的超微结构,最终导致植物死亡;随着Hg2+和Cd2+胁迫的增大,细胞超微结构的损伤程度和植物的生理变化是同步的;植物受毒害的程度表现出明显的剂量效应关系;在同一处理时间和浓度下,Cd2+对满江红的毒性大于Hg2+.Hg2+对满江红的致死浓度为3.5~4.0 mg/L,Cd2+为3.0~3.5 mg/L.对满江红鱼腥藻(Anabaena azollae Strasburger)细胞的超微结构变化观察表明,满江红鱼腥藻对Hg2+和Cd2+的耐受性明显高于满江红.  相似文献   

12.
Hg^2+和Cd^2+胁迫对满江红生理和细胞超微结构的影响   总被引:12,自引:0,他引:12  
研究了在梯度浓度Hg^2 和Cd^2 胁迫下,满江红(Azolla imbricata(Roxb.)Nakai)的叶绿素含量,叶绿素a/b比值,光合放氧速率,呼吸速率,抗氧化酶系(超氧化物歧化酶(SOD),过氧化氢酶(CAT),过氧化物酶(POD)和细胞超微结构受He^2 和Cd^2 的毒害影响。结果显示:随着胁迫程度的增大,叶绿素含量,叶绿素a/b比值,光合放氧速率明显下降,呼吸速率均在2mg/L浓度下达到峰值,尔后下降;SOD,CAT,POD的活性均出现不同程度的应激性升高(除POD在Cd^2 处理时下降),尔后下降,电镜观察发现,随着污染物浓度的增加和胁迫时间的延长,叶绿体出现膨大,破损和解体;线粒体嵴突膨胀和线粒体变形及空泡化;核染色质凝集,核仁消失。核膜破裂,实验结果表明:Hg^2 和Cd^2 污染不仅损害植物的生理活性,而且也破坏细胞的超微结构,最终导致植物死亡,随着Hg^2 和Cd^2 为3.0-3.5mg/L。对满江红鱼腥藻(Anabaena azollae Strasburger)细胞的超微结构变化观察表明,满江红鱼腥藻对Hg^2 和Cd^2 的耐受性明显高于满江红。  相似文献   

13.
主要研究了模拟锌污染对水车前叶细胞的自由基过氧化损伤和超微结构的变化,并对二者之间的关系作了初步探讨,随锌胁迫程度的增大,叶绿素含量,SOD(超氧化物歧化酶)活性和可溶性蛋白含量呈下降趋势;而POD(过氧化物酶)和CAT(过氧化氢酶)活性则先升后降;MDA(丙二醛)含量上升,超微结构的变化也呈现加重趋势,低浓度处理的变化为细胞核变形,叶绿体膨胀,类囊体排列紊乱,严重的超微结构的损伤是核仁散开,染色质凝集,细胞核几乎成为空核和核膜破裂,核质散出;线粒体脊突膨胀和部分溶解;叶绿体膜断裂,消失和部分类囊体溶解和散到细胞质中,实验结果表明,锌胁迫下叶细胞超微结构的变化反映了内膜系统遭到严重伤害,这可能是自由基过氧化损伤的结果。  相似文献   

14.
主要研究了模拟锌污染对水车前叶细胞的自由基过氧化损伤和超微结构的变化,并对二者之间的关系作了初步探讨。随锌胁迫程度的增大,叶绿素含量、SOD(超氧化物歧化酶)活性和可溶性蛋白含量呈下降趋势;而POD(过氧化物酶)和CAT(过氧化氢酶)活性则先升后降;MDA(丙二醛)含量上升。超微结构的变化也呈现加重趋势,低浓度处理的变化为细胞核变形、叶绿体膨胀、类囊体排列紊乱;严重的超微结构的损伤是核仁散开、染色质凝集,细胞核几乎成为空核和核膜破裂,核质散出;线粒体脊突膨胀和部分溶解;叶绿体膜断裂、消失和部分类囊体溶解和散到细胞质中。实验结果表明,锌胁迫下叶细胞超微结构的变化 反映了内膜系统遭到严重伤害,这可能是自由基过氧化损伤的结果。  相似文献   

15.
研究了不同Cu2+处理浓度(0、0.002、0.004、0.006、0.008 mmol.L-1)对菱叶片叶绿素含量和叶绿素荧光参数、膜脂过氧化和抗氧化系统等的影响,并用透射电镜观察了其叶细胞超微结构的变化。试验结果表明:随着Cu2+浓度的增加:(1)叶绿素含量、Fv/FoFv/Fm显著下降,Fo显著上升;(2)活性氧(AOS)产生速率、丙二醛(MDA)含量、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性逐渐升高;超氧化物歧化酶(SOD)、游离脯氨酸(Pro)和可溶性糖含量显著下降;抗坏血酸(AsA)、还原型谷胱甘肽(GSH)和谷胱甘肽还原酶(GR)含量呈先升后降趋势,且始终高于对照;(3)电镜观察发现,Cu2+对叶片细胞器的超微结构特别是叶绿体、线粒体和细胞核造成严重损伤。以上结果表明,本试验过量Cu2+的胁迫破坏了菱正常生理生化活动,并造成功能紊乱,最终导致菱的死亡。  相似文献   

16.
多氯联苯对桐花树幼苗生长及膜保护酶系统的影响   总被引:18,自引:1,他引:17  
通过盆栽实验,研究了不同浓度(180、900、1 800和2 700 μg·kg-1)多氯联苯(PCBs)对红树植物桐花树幼苗生长、叶绿素含量、膜质过氧化产物丙二醛(MDA)以及膜保护酶系统的影响.结果表明:PCBs对桐花树幼苗的生长有一定的促进作用,随着PCBs浓度的提高,桐花树幼苗的茎高、茎径和茎体积均呈升高趋势;在试验PCBs浓度范围内,桐花树幼苗叶片能保持相对正常的叶绿素水平和相对稳定的叶绿素a/b值,叶绿素a、叶绿素b和叶绿素a+b含量虽然有所降低,但均未低于对照的75%;叶绿素a/b值有所升高,但均未超过对照的10%.随着PCBs浓度的提高,桐花树幼苗叶片SOD活性呈单峰曲线变化,而POD活性和MDA含量呈单谷曲线变化.红树植物桐花树可通过生理生化机制适应一定浓度的PCBs污染,对PCBs有较强的耐受性和适应性,可用于PCBs污染的植物修复.  相似文献   

17.
研究了不同Cu^2+处理浓度(0、0.002、0.004、0.006、0.008 mmol·L^-1)对菱叶片叶绿素含量和叶绿素荧光参数、膜脂过氧化和抗氧化系统等的影响,并用透射电镜观察了其叶细胞超微结构的变化。试验结果表明:随着Cu^2+浓度的增加:(1)叶绿素含量、Fv/Fo和Fv/Fm显著下降,Fo显著上升;(2)活性氧(AOS)产生速率、丙二醛(MDA)含量、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性逐渐升高;超氧化物歧化酶(SOD)、游离脯氨酸(Pro)和可溶性糖含量显著下降;抗坏血酸(AsA)、还原型谷胱甘肽(GSH)和谷胱甘肽还原酶(GR)含量呈先升后降趋势,且始终高于对照;(3)电镜观察发现,Cu^2+对叶片细胞器的超微结构特别是叶绿体、线粒体和细胞核造成严重损伤。以上结果表明,本试验过量Cu^2+的胁迫破坏了菱正常生理生化活动,并造成功能紊乱,最终导致菱的死亡。  相似文献   

18.
"繁景"杜鹃为杂交后代优良新种,研究其对低温的耐受能力,为宁波及周边城市将其作为绿化植物提供参考。该研究以一年生杂交后代优良株系"繁景"为材料,采用盆栽试验,利用人工降温的方法,研究不同低温(0℃,-3℃,-6℃,-9℃)对其生长状态、生理生化及叶片超微结构的影响。结果表明:在-3℃和0℃的低温胁迫下,叶绿素含量降低缓慢且与处理前变化不显著,在-9℃和-6℃的低温胁迫下,其叶绿素含量要显著低于处理前和对照组,不同低温处理下,叶片光合速率均呈下降趋势,至试验结束时,光合速率与温度成正比。在-9℃和-6℃低温胁迫下,其叶片相对电导率和丙二醛(Malondialdehyde,MDA)的含量增长最快,且过氧化氢酶(Cata-lase,CAT)、以及超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化物酶(Peroxidase,POD)活性下降幅度最大,在-3℃和0℃低温胁迫下,MDA的含量增长较明显,但可溶性蛋白,CAT,POD及SOD活性变化不明显。温度降低对其叶片超微结构的影响较大,在0℃和-3℃低温胁迫下,其细胞结构正常;在-6℃低温胁迫下,类囊体结构开始模糊,淀粉粒和嗜锇颗粒变大且增多;在-9℃低温胁迫下,细胞膜开始解体,叶绿体被膜破损缺失严重,空洞化程度严重,部分细胞甚至成为空细胞。综合各指标变化情况,杜鹃优良株系能耐受的较低温度为-6℃。因此,杜鹃该优良株系为较耐寒品种,可作为宁波及周边城市良好的杜鹃花绿化候选材料。  相似文献   

19.
锌、镉及其复合胁迫下白花泡桐幼苗的生理及富集特征   总被引:1,自引:0,他引:1  
采用水培培养的试验方法,研究白花泡桐幼苗在锌 (Zn)、镉 (Cd) 单一及复合胁迫下的生理生化响应及对重金属的富集、转移特征变化。结果表明,单一及复合重金属胁迫下,白花泡桐的生物量、株高及过氧化物酶 (Peroxidase,POD) 活性均随处理浓度的增加而降低。在复合污染下,Zn、Cd在植株的株高及生物量上表现出拮抗作用。与对照比,单一胁迫下,随着Zn浓度的增加,白花泡桐叶绿素含量和过氧化氢酶 (Catalase,CAT) 活性先增加后减小,超氧化物歧化酶 (Superoxide dismutase,SOD) 活性升高,地上部丙二醛 (Malondialdehyde,MDA) 含量先减小后增加;随着Cd浓度的增加,叶绿素含量和过氧化氢酶 (CAT) 活性升高,超氧化物歧化酶 (SOD) 活性及地上部丙二醛 (MDA) 含量先增加后减小,复合胁迫下,则表现出更加复杂的生理响应。白花泡桐幼苗对Cd的富集部位集中在根部;对Zn的富集部位集中在地上部,且转移系数大于1.00;Zn的加入会促进重金属向地上部分的转移;白花泡桐具有对复合重金属污染地进行有效的生态恢复的潜力。  相似文献   

20.
研究了不同浓度的Cr6+(0、0.1、0.2、0.5、1.5 mmolL-1)对水花生愈伤组织内几种代表性生理生化指标的胁迫效应,并对其进行电镜观察.结果表明:(1)随着Cr6+浓度的增加,总叶绿素、叶绿素a/b和可溶性蛋白含量,均呈先升后降趋势.(2)超氧阴离子(O 2)和过氧化氢(H2O2)含量在0.1 mmo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号