首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid ?ōhi?a Death (ROD), caused by the fungal pathogen Ceratocystis, is killing large numbers of ?ōhi?a trees (Metrosideros polymorpha) in Hawai?i. ?ōhi?a are a dominant tree in Hawaiian forests, have a range that goes from arid to wet forest climates, and are important for endangered species habitat and ecosystem function. To test whether actively planting ?ōhi?a seedlings is a viable restoration strategy in areas with high ROD mortality, we planted ?ōhi?a in a ROD‐affected forest and crossed this with weeding and fencing treatments to compare ROD mortality to other stressors. We also tested for viable Ceratocystis spores in soils around planting areas. We found that seedlings were more likely to die in unweeded and unfenced treatments than controls. Although viable Ceratocystis spores were found in soil, none of the 41 dead seedlings tested positive for Ceratocystis. This indicates that competition from exotic plants and exotic feral ungulate damage are more likely to kill seedlings than ROD within the first year after planting.  相似文献   

2.
Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 2001–2003 to identify all potential larval mosquito habitat within two 100+ ha mesic‐dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; ‘Ainahou Ranch and Mauna Loa Strip Road. At ‘Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally‐occurring sites. Additionally, moderate‐size (≈20–22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger‐ and smaller‐volume habitat (<50%). Less than 20% of trees surveyed at ‘Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at ‘Ainahou Ranch detected 56% (95% CI: 42–68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic‐dry landscapes of Hawai'i where anthropogenic sources predominate.  相似文献   

3.
Animals often increase their fitness by moving across space in response to temporal variation in habitat quality and resource availability, and as a result of intra and inter‐specific interactions. The long‐term persistence of populations and even whole species depends on the collective patterns of individual movements, yet animal movements have been poorly studied at the landscape level. We quantified movement behavior within four native species of Hawaiian forest birds in a complex lava‐fragmented landscape: Hawai?i ‘amakihi Chlorodrepanis virens, ‘oma‘o Myadestes obscurus, ‘apapane Himatione sanguinea, and ‘i‘iwi Drepanis coccinea. We evaluated the relative importance of six potential intrinsic and extrinsic drivers of movement behavior and patch fidelity: 1) forest fragment size, 2) the presence or absence of invasive rats (Rattus sp.), 3) season, 4) species, 5) age, and 6) sex. The study was conducted across a landscape of 34 forest fragments varying in size from 0.07 to 12.37 ha, of which 16 had rats removed using a treatment‐control design. We found the largest movements in the nectivorous ‘apapane and ‘i‘iwi, intermediate levels in the generalist Hawai?i ‘amakihi, and shortest average movement for the ‘oma‘o, a frugivore. We found evidence for larger patch sizes increasing patch fidelity only in the ‘oma‘o, and an effect of rat‐removal increasing patch fidelity of Hawai?i ‘amakihi only after two years of rat‐removal. Greater movement during the non‐breeding season was observed in all species, and season was an important factor in explaining higher patch fidelity in the breeding season for ‘apapane and ‘i‘iwi. Sex was important in explaining patch fidelity in ‘oma‘o only, with males showing higher patch fidelity. Our results provide new insights into how these native Hawaiian species will respond to a changing environment, including habitat fragmentation and changing distribution of threats from climate change.  相似文献   

4.
A landscape perspective of the Hawaiian rain forest dieback   总被引:1,自引:0,他引:1  
Abstract. Throughout the 1960s and 1970s there was a rapid decline and canopy dieback in the Metrosideros polymorpha dominated rain forest of Hawai'i. An analysis of air photo sets from 1954, 1965, and 1972, covering the windward slopes of Mauna Kea and Mauna Loa, gave support for an alien disease hypothesis. A total demise of the native forest was predicted for the early 1990s. This prediction as well as the disease hypothesis proved to be wrong. Various searches for a single climatic cause also failed to explain the dieback. The spatial dynamics of the dieback phenomenon were newly analyzed with an additional air photo set from 1977 and by using GIS with spatial statistics. Two juxtaposed and climatically similar landscape matrix samples of ca. 200 km2, one each on Mauna Loa and Mauna Kea, were subjected to an analysis of landform heterogeneity and superimposed dieback patterns. The Mauna Loa matrix displays up to 15 000 yr old lava flows, while the Mauna Kea matrix displays up to 250 000 yr old substrates. Initiation of dieback occurred simultaneously on both mountains and was highly correlated with poorly-drained sites. The progression of dieback, however, followed a gradient of decreasing soil moisture, which often terminated at clearly recognizable substrate boundaries in the Mauna Loa matrix and moved over well-drained hill sites in the Mauna Kea matrix. Metrosideros dieback spread across the entire spectrum of volcanic substrates and habitat moisture regimes and developed from a smaller into a larger patch mosaic. By 1977, ca. 50 % of the forest area in both sample matrices had gone into dieback. Thereafter, the dieback came to a halt. The domino-type collapse, which frequently came to a halt at volcanic substrate boundaries, indicates that stands in better drained sites were also predisposed to die. Stands on adjoining substrates often survived. Substrates with dieback stands displayed no other obvious vigor-reducing stresses. The canopy trees on such substrates may have a common history, such as a major disturbance (including dieback) that synchronized stand development in the past. Subsequent weather disturbances and other abiotic/endogenous stresses associated with stand maturation, such as nutrient limitations and stand-level senescence, may reinforce a rhythmic synchrony over several generations of canopy cohorts.  相似文献   

5.
The endangered Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense (Asteraceae), has experienced a severe decline in distribution and abundance because of predation by alien ungulates. The small remnant natural population on the Mauna Kea volcano contains only 46 individuals. By contrast, the Haleakala silversword, A. sandwicense ssp. macrocephalum, consists of a large, vigorous population exceeding 60 000 individuals. Molecular genetic variation in the two populations was assessed using random amplified polymorphic DNA (RAPD) loci. Despite its severe crash in size, the Mauna Kea population did not differ significantly from the Haleakala population in the number of detectably polymorphic loci or in heterozygosity. The lack of substantial reduction in genetic variation, at least as measured with RAPD loci, suggests that the Mauna Kea population may not yet have gone through multiple generations at very small size.  相似文献   

6.
Estimates of demographic parameters such as survival and reproductive success are critical for guiding management efforts focused on species of conservation concern. Unfortunately, reliable demographic parameters are difficult to obtain for any species, but especially for rare or endangered species. Here we derived estimates of adult survival and recruitment in a community of Hawaiian forest birds, including eight native species (of which three are endangered) and two introduced species at Hakalau Forest National Wildlife Refuge, Hawai?i. Integrated population models (IPM) were used to link mark–recapture data (1994–1999) with long‐term population surveys (1987–2008). To our knowledge, this is the first time that IPM have been used to characterize demographic parameters of a whole avian community, and provides important insights into the life history strategies of the community. The demographic data were used to test two hypotheses: 1) arthropod specialists, such as the ‘Akiapōlā‘au Hemignathus munroi, are ‘slower’ species characterized by a greater relative contribution of adult survival to population growth, i.e. lower fecundity and increased adult survival; and 2) a species’ susceptibility to environmental change, as reflected by its conservation status, can be predicted by its life history traits. We found that all species were characterized by a similar population growth rate around one, independently of conservation status, origin (native vs non‐native), feeding guild, or life history strategy (as measured by ‘slowness’), which suggested that the community had reached an equilibrium. However, such stable dynamics were achieved differently across feeding guilds, as demonstrated by a significant increase of adult survival and a significant decrease of recruitment along a gradient of increased insectivory, in support of hypothesis 1. Supporting our second hypothesis, we found that slower species were more vulnerable species at the global scale than faster ones. The possible causes and conservation implications of these patterns are discussed.  相似文献   

7.
Despite the presence of melon‐headed whales in tropical and subtropical waters worldwide, little is known about this species. To assess population structure in Hawai‘i, dedicated field efforts were undertaken from 2000 to 2009. Using only good quality photographs, there were 1,433 unique photo‐identified individuals, of which 1,046 were distinctive. Of these, 31.5% were seen more than once. Resighting data combined with social network analyses showed evidence of two populations—a smaller, resident population, seen exclusively off the northwest region of the island of Hawai‘i, and a larger population, seen throughout all the main Hawaiian Islands (hereafter the “main Hawaiian Islands” population). A Bayesian analysis examining the probability of movements of individuals between populations provided a posterior median dispersal rate of 0.0009/yr (95% CI = 0–0.0041), indicating the populations are likely demographically independent. Depth of encounters with the Hawai‘i Island resident population was significantly shallower (median = 381 m) than those with the main Hawaiian Islands population (median = 1,662 m). Resightings of individuals have occurred up to 22 yr apart for the Hawai‘i Island resident population and up to 13 yr apart for the main Hawaiian Islands population, suggesting long‐term residency to the islands for both populations.  相似文献   

8.
Although pictures are widely used as stimuli in cognitive experiments with both humans and animals, the question of how subjects interpret pictures receives less attention. Gaining a better understanding of this is especially important when working with avian subjects, as their visual anatomy and processing is different from that of humans, and even differs from one avian species to another. Successful testing for picture recognition in birds has been carried out mainly with pigeons, but no such research has been explicitly performed with ‘brainy’ birds like parrots, despite the fact that these have been the subject of exciting cognitive research. This study tested kea (Nestor notabilis) mountain parrots for picture–object recognition using a procedure which required the transfer of a learned discrimination task between pictures and objects. Kea successfully showed both picture‐to‐object and object‐to‐picture transfer and performed at a comparable level when pictures were displayed on a touch screen or as printed photographs.  相似文献   

9.
The Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense, has experienced both a severe population crash associated with an increase in alien ungulate populations on Mauna Kea, and a population bottleneck associated with reintroduction. In this paper, we address the genetic consequences of both demographic events using eight microsatellite loci. The population crash was not accompanied by a significant reduction in number of alleles or heterozygosity. However, the population bottleneck was accompanied by significant reductions in observed number of alleles, effective number of alleles, and expected heterozygosity, though not in observed heterozygosity. The effective size of the population bottleneck was calculated using both observed heterozygosities and allele frequency variances. Both methods corroborated the historical census size of the population bottleneck of at most three individuals. The results suggest that: (i) small populations, even those that result from severe reductions in historical population size and extent, are not necessarily genetically depauperate; and (ii) species reintroduction plans need to be conceived and implemented carefully, with due consideration to the genetic impact of sampling for reintroduction.  相似文献   

10.
Avian frugivores historically played important roles as seed dispersers across the Hawaiian Islands, but presently, the ‘ōma‘o (Myadestes obscurus) is the only extant native frugivore in the wild on the Island of Hawaii. During recent decades, the introduced generalist Japanese White‐eye (Zosterops japonicus) has become the most common bird in Hawaii. The movements of avian frugivores largely dictate how far seeds get dispersed and into what kinds of microhabitats. This study compares the movement patterns and diet of the ‘ōma‘o to the Japanese White‐eye to understand how a native differs from a non‐native frugivore in the type and distances of seeds dispersed. Radiotelemetry was conducted on nine ‘ōma‘o and nine Japanese White‐eyes in a system of natural forest fragments (kīpuka) created by lava flows. Japanese White‐eyes disperse seeds approximately twice as far as ‘ōma‘o; during the time of gut passage, ‘ōma‘o move a mean distance of 98.1 m, and Japanese White‐eyes move 170.1–194.8 m. However, the ‘ōma‘o disperses the seeds of at least seven different native fruit species compared with two dispersed by Japanese White‐eyes. Japanese White‐eyes were found to disperse seeds smaller than 1.5 mm, whereas the ‘ōma‘o dispersed seeds up to 6 mm in diameter. Despite their ecological differences, both birds distribute certain seeds within and among kīpuka and likely facilitate primary succession of fruiting plants in the young lava matrix. However, this study suggests that if the ‘ōma‘o were extirpated, a smaller‐bodied generalist cannot entirely substitute for the ecological role played by the native frugivore.  相似文献   

11.
Thirty kilometers south of the island of Hawai‘i lies the Lō‘ihi Seamount, an active submarine volcano that hosts a network of low‐temperature hydrothermal vents enriched in ferrous iron that supports extensive microbial mats. These mats, which can be a half a meter deep, are composed of ferric iron bound to organic polymers – the metabolic byproduct of iron‐oxidizing Zetaproteobacteria. Though the role of Zetaproteobacteria in mat formation is well established, we have a limited understanding of how differences in diversity are related to mat morphology. We used Minimum Entropy Decomposition and ZetaOtu classification to demonstrate cryptic diversity between closely related Zetaproteobacteria while showing habitat and geographic specificity. Veiled mats, common structures at Lō‘ihi, exhibit distinct community composition and contain diversity not detected in other mat types, including specific Zetaproteobacteria and an unclassified Gammaproteobacteria. Our analyses also indicate that diversity can change dramatically across small spatial transects from points of active venting, yet we found comparatively few differences between major sampling sites. This study provides a better picture of the microbiome responsible for iron mat production at Lō‘ihi and has broad implications for our understanding of these globally distributed communities.  相似文献   

12.
We describe the upper portion of the bill sheath (rhinotheca) of the kākāpō (Strigops habroptilus) from three adult female specimens. The external buccal surface of the rhinotheca is deeply concave with a prominent palatal stop and hardened chevrons creating a ‘milling apparatus’ that the kākāpō uses to grind food. The palatal stop presents a working face of 40–50?mm2. The internal surface of the rhinotheca mirrors the overlying premaxilla and provides a distinct thickened abutment consistent with resistance against the increased workload of the mandibles (gnathotheca) due to the kākāpō’s fibrous diet and chewing style. Along the midline, the rhinotheca at the abutment is up to 5.6?mm thick, compared with as thin as 2.1?mm elsewhere on the midline. The closely related Nestor parrots have less developed palatal stops, chevrons and abutments on their rhinothecas consistent with their lower preference for fibrous plant material. The form of the rhinotheca agrees with the kākāpō’s feeding ecology as a generalist herbivore that grinds locally available fibrous material to assist digestion.  相似文献   

13.
Introduced vector-borne diseases, particularly avian malaria (Plasmodium relictum) and avian pox virus (Avipoxvirus spp.), continue to play significant roles in the decline and extinction of native forest birds in the Hawaiian Islands. Hawaiian honeycreepers are particularly susceptible to avian malaria and have survived into this century largely because of persistence of high elevation refugia on Kaua‘i, Maui, and Hawai‘i Islands, where transmission is limited by cool temperatures. The long term stability of these refugia is increasingly threatened by warming trends associated with global climate change. Since cost effective and practical methods of vector control in many of these remote, rugged areas are lacking, adaptation through processes of natural selection may be the best long-term hope for recovery of many of these species. We document emergence of tolerance rather than resistance to avian malaria in a recent, rapidly expanding low elevation population of Hawai‘i ‘Amakihi (Hemignathus virens) on the island of Hawai‘i. Experimentally infected low elevation birds had lower mortality, lower reticulocyte counts during recovery from acute infection, lower weight loss, and no declines in food consumption relative to experimentally infected high elevation Hawai‘i ‘Amakihi in spite of similar intensities of infection. Emergence of this population provides an exceptional opportunity for determining physiological mechanisms and genetic markers associated with malaria tolerance that can be used to evaluate whether other, more threatened species have the capacity to adapt to this disease.  相似文献   

14.
In sharp contrast with birds and mammals, sex‐determination systems in ectothermic vertebrates are often highly dynamic and sometimes multifactorial. Both environmental and genetic effects have been documented in common frogs (Rana temporaria). One genetic linkage group, mapping to the largest pair of chromosomes and harbouring the candidate sex‐determining gene Dmrt1, associates with sex in several populations throughout Europe, but association varies both within and among populations. Here, we show that sex association at this linkage group differs among populations along a 1500‐km transect across Sweden. Genetic differentiation between sexes is strongest (FST = 0.152) in a northern‐boreal population, where male‐specific alleles and heterozygote excesses (FIS = ?0.418 in males, +0.025 in females) testify to a male‐heterogametic system and lack of X‐Y recombination. In the southernmost population (nemoral climate), in contrast, sexes share the same alleles at the same frequencies (FST = 0.007 between sexes), suggesting unrestricted recombination. Other populations show intermediate levels of sex differentiation, with males falling in two categories: some cluster with females, while others display male‐specific Y haplotypes. This polymorphism may result from differences between populations in the patterns of X‐Y recombination, co‐option of an alternative sex‐chromosome pair, or a mixed sex‐determination system where maleness is controlled either by genes or by environment depending on populations or families. We propose approaches to test among these alternative models, to disentangle the effects of climate and phylogeography on the latitudinal trend, and to sort out how this polymorphism relates to the ‘sexual races’ described in common frogs in the 1930s.  相似文献   

15.
Abstract. The strong environmental gradients and ‘natural experimental design’ of Mauna Loa volcano, Hawaii, provide an outstanding opportunity to study controls on ecosystem development. We measured above-ground vascular plant biomass and species composition on 42 sites on which precipitation, temperature, substrate texture, and substrate age varied substantially and largely independently. Biomass and species richness of live plants were strongly correlated with precipitation and lava flow age, but not with temperature or lava flow texture. Species composition, as measured by correspondence analysis, was likewise correlated with precipitation and flow age, but composition was also strongly influenced by temperature. Lava texture had a complex effect on vegetation, with ‘a’ a lava favoring vegetation development on wet sites and pāhoehoe favoring development on dry sites. Many locations remain virtually free of invasion by alien species; aliens appear where disturbance has facilitated invasion, either from stand-level dieback in rainforest or a grass-fire cycle on the dry, leeward side of the mountain. All four of the environmental factors studied here (precipitation, temperature, substrate texture, and substrate age) exert significant and independent control over vegetation biomass and/or species composition on Mauna Loa.  相似文献   

16.
Studies of short‐finned pilot whales suggest they travel in stable mixed‐sex groups composed of strongly associated individuals; however, temporal analyses of social structure are lacking. To examine site fidelity, association patterns, and temporal relationships, we analyzed data from 267 encounters of this species off the island of Hawai‘i from 2003 through 2007, identifying 448 distinctive individuals (68.1% seen more than once). About 72% of the whales were linked by association into a single social network, suggesting the possibility of multiple populations using the area. Sighting histories suggested that only some individuals exhibit high site fidelity. Individuals demonstrated preferential associations and community division was strongly supported by average‐linkage hierarchical cluster analysis of the association data. Nine longitudinally stable social units composed of key individuals and their constant companions were identified. Qualitative assignment of age and sex classes of unit members indicated that some segregation between adult males and female/calf pairs may occur. Temporal analyses of individuals encountered on the same day indicate stable long‐term associations. Differential patterns of residency and site fidelity were unexpected and may be indicative of multiple populations around the main Hawaiian Islands. The presence of a resident population demonstrating strong, long‐term site fidelity and associations off Hawai‘i Island may warrant special management considerations.  相似文献   

17.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

18.
Diuraphis noxia is a newly established alien pest in the Czech Republic. There were two population explosions during the period 1993–2012. A successful overwintering of the anholocyclic populations of D. noxia was the cause of a population explosion in the oncoming growth season. Viviparous parthenogenetic females of the anholocyclic populations and diapausing eggs of holocyclic populations could overwinter at the same time. Analysis of the course of winter temperatures showed that a complete winter mortality of anholocyclic populations depended mainly on the duration of the freezing period, when temperature dropped below ?5°C, and on the intensity of the frost. We proposed the cumulative effective freeze (in minus degree days) as a key parameter for the aphid anholocyclic population's mortality during overwintering. This parameter equalled ?10.1 degree days for relatively warm winter period 2006–2007, whereas in the relatively cold winter period of 2009–2010, this parameter reached ?87.1 DD, which caused complete mortality of anholocyclic populations. A cumulative effective freeze could be used for short‐time prognosis of D. noxia population explosion.  相似文献   

19.
We conducted DNA fingerprinting analyses to ascertain the mating system and population genetic structure of the palila, an endangered Hawaiian honeycreeper, which occupies a fragmented range on the Mauna Kea volcano of the island of Hawai'i. DNA fingerprinting of twelve complete families from the Pu'u La'au population revealed no evidence of extrapair fertilization or intraspecific brood parasitism. Band-sharing coefficients from fingerprints produced with two probes revealed that the large Pu'u La'au population on the southwest slope of Mauna Kea, and a smaller, geographically separate population on the east slope (at Kanakaleonui) had relatively high and virtually identical levels of minisatellite variability (mean S of 0.27 for each population based on combined data of M13 and Jeffreys 33.15 probes). The two populations also had nearly identical allele frequencies based on their mean corrected similarity, Sij, of 0.98. These data suggest that the two populations have not been fragmented long and/or have sufficient current gene flow to ameliorate any affects of genetic drift. We conclude that present levels of inbreeding are low within both populations, and that proposed translocations of individuals from Pu'u La'au to Kanakaleonui appear appropriate from a genetic standpoint.  相似文献   

20.
The movement of organisms between subdivided populations is considered a key influence on the persistence of species in modified landscapes. In particular, the ability to recolonize ‘empty’ fragments of habitat is directly relevant to conservation management, and to understanding the link between pattern and process in metapopulations. We studied the movement and recolonization ability of the bush rat, Rattus fuscipes, in a highly fragmented agricultural landscape in south‐western Victoria, Australia. Populations were monitored in seven small (<2.5 ha) and two large (>49 ha) forest fragments before removal of all residents from four of the small fragments. Subsequent monitoring (for up to 16 months) allowed the detection of colonizing individuals, and comparisons between ‘experimental’ and ‘control’ fragments. Rattus fuscipes readily moved between fragments and successfully recolonized (i.e. both males and females arrived) two of four fragments in which extinctions were simulated. A single male moved into a third experimental fragment. In one fragment, new animals were detected 1 month after the removal of residents, indicating that recolonization can occur rapidly. Dispersers were not a random sample of the population: although both males and females, and adults and sub‐adults were recorded dispersing, adult males in reproductive condition predominated. Functional connectivity appears to be high for R. fuscipes in the study landscape. Results from this manipulative experiment provide direct empirical evidence that a capacity for movement allows recolonization of fragments of suitable habitat and is a key process responsible for species persistence in fragmented landscapes, as predicted by theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号