首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
The formation of the head and trunk-tail organizers in the dorsal marginal zone (DMZ) of an amphibian embryo is thought to require spatial and temporal interactions between the Nieuwkoop center and the DMZ. Recent studies of the Xenopus embryo suggested that intra-DMZ interaction is also needed to establish the regional specificity of the DMZ. However, it is not yet clarified when and how the final pattern of the head and trunk-tail organizers is established. To analyze the intra-DMZ interactions, we injected suramin into the blastocoel of the mid-blastula of the urodele, Cynops pyrrhogaster, at 6 h prior to the onset of gastrulation. The pigmented blastopore formed normally, but the convergent extension and involution of the DMZ and dorsal axis formation of the embryo were completely inhibited. Expression of gsc, chd and Lim-1 were not maintained, but noggin was unaffected in the suramin-treated embryos. Dorsal axis formation and the expression of these genes of the suramin-treated embryos were rescued by replacing the lower endodermal half of the DMZ (LDMZ) with normal LDMZ. The present results of embryological and molecular examinations indicate that organizing activity of the early Cynops gastrula DMZ is restricted to the LDMZ, and that the organizing activity of the LDMZ is established during the late blastula stages. The results also indicate that LDMZ triggers the sequential interaction within the DMZ that establishes the final pattern of the regional specificity of the DMZ, and that the formation of the LDMZ is a primary and necessary event for dorsal axis formation.  相似文献   

2.
The isolated upper marginal zone from the initial stage ofCynops gastrulation is not yet determined to form the dorsal axis mesoderm: notochord and muscle. In this experiment, we will indicate where the dorsal mesoderm-inducing activity is localized in the very early gastrula, and what is an important event for specification of the dorsal axis mesoderm during gastrulation. Recombination experiments showed that dorsal mesoderm-inducing activity was localized definitively in the endodermal epithelium (EE) of the lower marginal zone, with a dorso-ventral gradient; and the EE itself differentiated into endodermal tissues, mainly pharyngeal endoderm. Nevertheless, when dorsal EE alone was transplanted into the ventral region, a secondary axis with dorsal mesoderm was barely formed. However, when dorsal EE was transplanted with the bottle cells which by themselves were incapable of mesoderm induction, a second axis with well-developed dorsal mesoderm was observed. When the animal half with the lower marginal zone was rotated 180° and recombined with the vegetal half, most of the rotated embryos formed only one dorsal axis at the primary blastopore side. The present results suggest that there are at least two essential processes in dorsal axis formation: mesoderm induction of the upper marginal zone by endodermal epithelium of the lower marginal zone, and dorsalization of the upper dorsal marginal zone evoked during involution.  相似文献   

3.
W C Smith  R M Harland 《Cell》1991,67(4):753-765
Expression cloning from a pool of gastrula cDNAs identified the Wnt family member Xwnt-8 as having dorsal axis-inducing activity in Xenopus embryos. Microinjected Xwnt-8 mRNA was able to rescue the development of a dorsally complete anterior-posterior axis in embryos ventralized by exposure to UV light. Axis induction was observed in embryos injected in either marginal or vegetal blastomeres at the 32-cell stage. Vegetal blastomeres receiving Xwnt-8 mRNA contributed progeny not to the induced dorsal axis, but to the endoderm, a result consistent with Xwnt-8 causing cells to act as a Nieuwkoop center (the vegetal-inducing component of normal dorsal axis formation), rather than as a Spemann organizer (the induced dorsal marginal zone component that directly forms the dorsal mesoderm). Xwnt-8, which is normally expressed ventrally in midgastrula and neurula embryos, appears to mimic, when injected, maternally encoded dorsal mesoderm-inducing factors that act early in development.  相似文献   

4.
It has been indicated that specification of the dorsal marginal mesoderm of the Cynops gastrula is established by vertical interactions with other layers, which occur during its extended involution. In the present study, when the prospective notochordal area of the early gastrula was almost completely removed together with the dorsal mesoderm-inducing endoderm and most of the bottle cells, the D-less gastrulas still formed the dorsal axis with a well-differentiated notochord; in half of them, where the involution occurred bi-laterally, twin axes were observed. On the other hand, when the wound of a D-less gastrula was repaired by transplanting the ventral marginal zone and ectoderm, the formation of the dorsal axis was inhibited if the involution of the lateral marginal zone was prevented by the transplanted piece. The present study suggests that: (i) cells having dorsal mesoderm-forming potency distribute farther laterally than the fate map; and (ii) the extended involution plays an essential role in the specification of the dorsal marginal mesoderm, especially in notochordal differentiation in normal Cynops embryogenesis.  相似文献   

5.
Normally developing embryos of Xenopus were fixed at various stages between the blastula and early tail bud stage, and their serial sections were examined. The marginal belt of the blastula was characterized by abundance of cells with RNA-rich peripheral cytoplasm called mesoplasm. At the early gastrula stage, the marginal belt was folded into two layers giving rise to mesodermal material and marginal ectoderm. During gastrulation, the mesodermal material, which consisted of RNA-rich cells, spread to enclose the blastocoel and the endoderm, and a large part of it was shifted to the dorsal side of the embryo. It gradually established the mesodermal layer. The notochord was formed on the dorsal lip of the blastopore by involution, separately from preformed mesodermal material. The RNA-rich cells in the marginal ectoderm became columnar, forming a broad belt in the marginal zone. This belt was deformed and shifted to the dorsal side during gastrulation, eventually establishing the neural plate showing quantitative differentiation along the head-tail axis. Possible mechanisms involved in the formation of the neural plate and mesoderm were discussed with reference to the organizer and the mesoplasm.  相似文献   

6.
Early cellular interactions promote embryonic axis formation in Xenopus laevis   总被引:12,自引:0,他引:12  
We have attempted to define the location and mode of action of axial determinants in the egg of Xenopus laevis. To this end, we transplanted small numbers of blastomeres from normal 64-cell stage embryos into synchronous recipient embryos which had been irradiated with ultraviolet light prior to first cleavage. Without transplantation, such embryos fail to develop dorsal structures of the embryonic body axis. We found that one to three blastomeres transplanted from the vegetal-most octet of cells can effect complete or partial rescue of of axis development in a recipient, provided that the donor cells derive from the quadrant just under the prospective dorsal marginal region. These same cells, when transplanted into the ventral vegetal quadrant of a normal 64-cell embryo, cause the formation of a complete second body axis. In contrast, other cells from the vegetal octet of normal donors fail to cause axis formation. When the rescuing donor cells are labeled with a lineage-restricted fluorescent marker, we find that their progeny do not contribute to the axial structures of the recipient. Progeny of the transplanted cells are found below the level of the blastopore in the early gastrula and eventually give rise to portions of the gut, as is their fate in normal development. These results, in agreement with those of Nieuwkoop (P.D. Nieuwkoop, 1977, Curr. Top. Dev. Biol. 11, 115-132), imply that the dorsal-most vegetal cells of the 64-cell embryo receive from the egg cytoplasm a set of determinants enabling them to induce neighboring cells to undertake axis formation. We discuss the relationship between axis induction in rescued irradiated embryos and axis determining processes in normal embryogenesis.  相似文献   

7.
In pre-streak chick embryos, the extraembryonic posterior marginal zone is able to induce an embryonic axis at an ectopic site without contributing cells to the induced primitive streak. This region expresses mesoderm-inducing factors that are capable of inducing an ectopic streak. Downstream of these events, chordin and bone morphogenetic protein acting within the central disc may play mutually opposing roles influencing streak formation. Although extraembryonic regions are important in establishing the embryonic axis, there does not appear to be an anterior region with head-inducing activity similar to that of the anterior visceral endoderm of the mammalian embryo.  相似文献   

8.
We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.  相似文献   

9.
Regional specification within the mesoderm of early embryos of Xenopus laevis   总被引:22,自引:0,他引:22  
We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce 'dorsal-type' mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2-4) induce either 'intermediate-type' (muscle, mesothelium, mesenchyme and blood) or 'ventral-type' (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.  相似文献   

10.
Two types of axis-deficient embryos developed after deletion of the vegetal cytoplasm: wasp-shaped embryos and permanent-blastula-type embryos. In situ hybridization revealed that neither type of axis-deficient embryo expressed goosecoid or pax-6. brachyury was expressed in the constricted waist region of the wasp-shaped embryos but was not expressed in the permanent-blastula-type embryos. Further, we examined the effect of UV irradiation on Japanese newt embryos. Surprisingly, UV-irradiated Japanese newt eggs formed hyperdorsalized embryos. These embryos gastrulated in an irregular circular fashion with goosecoid expression in the circular equatorial region. At tailbud stage, these embryos formed a proboscis which is very reminiscent of that formed in hyperdorsalized Xenopus embryos. Transplantation of the marginal region of the UV-irradiated embryos revealed that the entire marginal zone had organizer activity. Thus we conclude that UV hyperdorsalizes Japanese newt embryos. Finally, lithium treatment of normal embryos at the 32-cell stage also resulted in hyperdorsalization. Lithium treatment of vegetally deleted embryos had two distinct results. Lithium treatment of permanent-blastula-type embryos did not result in the formation of dorsal axial structures, while the same treatment reinduced gastrulation and dorsal axis formation in the wasp-shaped embryos. Based on these results, we propose a model for early axis specification in Japanese newt embryos. The model presented here is fundamentally identical to the Xenopus model, with some important modifications. The vegetally located determinants required for dorsal development (dorsal determinants, DDs) are distributed over a wider region at fertilization in Japanese newt embryos than in Xenopus embryos. The marginal region of the Japanese newt embryo at the beginning of development overlaps with the field of the DDs. Gastrulation is very likely to be a dorsal marginal-specific property, while self-constriction is most probably a ventral marginal-specific property in Japanese newt embryos.  相似文献   

11.
Regional differences of proteins were studied by two-dimensional gel electrophoresis in early embryos of Xenopus laevis. Pairs of blastomeres on the dorso-ventral axis were isolated from 16- and 32-cell embryos. Some dorso-ventral differences have been detected at 32-cell embryos. The proteins which were clearly detectable in the vegetal cells of the ventral marginal zone were only faintly detectable or undetectable in those of the dorsal marginal zone, and a regionally specific spot was detected in dorsal blastomeres.  相似文献   

12.
We have examined the tissue interactions responsible for the expression of heart-forming potency during gastrulation. By comparing the specification of different regions of the marginal zone, we show that heart-forming potency is expressed only in explants containing both the dorsal lip of the blastopore and deep mesoderm between 30 degrees and 45 degrees lateral to the dorsal midline. Embryos from which both of these 30 degrees-45 degrees dorsolateral regions have been removed undergo heart formation in two thirds of cases, as long as the dorsal lip is left intact. If the dorsal lip is removed along with the 30 degrees-45 degrees regions, heart formation does not occur. These results indicate that the dorsolateral deep mesoderm must interact with the dorsal lip in order to express heart-forming potency. Transplantation of the dorsal lip into the ventral marginal zone of host embryos results in the formation of a secondary axis; in over half of cases, this secondary axis includes a heart derived from the host mesoderm. These findings suggest that the establishment of heart mesoderm is initiated by a dorsalizing signal from the dorsal lip of the blastopore.  相似文献   

13.
The dorsal marginal zone (DMZ) of an amphibian early gastrula is thought to consist of at least two distinct domains: the future head and trunk-tail organizers. We studied the mechanism by which the organizing activities of the lower half of the DMZ (LDMZ) of the urodelean (Cynops pyrrhogaster) embryo are changed. The uninvoluted LDMZ induces the notochord and then organizes the trunk-tail structures, whereas after cultivation in vitro or suramin treatment, the same LDMZ loses the notochord-inducing ability and organizes the head structures. A cell-lineage experiment indicated that the change in the organizing activity of the LDMZ was reflected in the transformation of the inductive ability: from notochord-inducing to neural-inducing activity. Using RT-PCR, we showed that the LDMZ expressed gsc, lim-1, chordin, and noggin, but not the mesoderm marker bra. In the sandwich assay, the LDMZ induced bra expression in the animal cap ectoderm, but the inductive activity was inhibited by cultivation or suramin treatment. The present study indicates that the change in the organizing activity of the LDMZ from trunk-tail to head is coupled with the loss of notochord-inducing activity. Based on these results, we suggest that this change is essential for the specification of the head and trunk-tail organizers during gastrulation.  相似文献   

14.
Suramin, a polyanionic compound, which is thought to inhibit the binding of growth factors to their receptors, prevents the differentiation of the dorsal blastopore lip of early gastrulae into dorsal mesodermal structures as notochord and somites. Suramin treated blastopore lips form ventral mesodermal structures, mainly heart structures. Several cases showed rythmic contractions ("beating hearts"). Of special interest is the fact that blastopore lips isolated from middle gastrulae followed by suramin treatment differentiate in about 50% of the cases brain structures without the presence of notochord. These data suggest that suramin prevents the differentiation of the dorsal blastopore lip into notochord up to the early middle gastrula stage but no longer the formation of head mesoderm, which is the prequisite for the induction of archencephalic brain structures. Treated chordamesoderm with overlaying ectoderm from late gastrulae will differentiate as untreated controls, namely into dorsal axial structures like notochord, somites and brain structures. The results indicate that primarily a more general or ventral mesodermal signal is transferred from the dorsal vegetal blastomeres (Nieuwkoop center) to the dorsal marginal zone. The dorsalization, which enables the blastopore lip to differentiate into head mesoderm and notochord and in turn to acquire neuralizing activity, takes place during the early steps of gastrulation.  相似文献   

15.
The dorsal marginal zone (DMZ) of the amphibian embryo is a key embryonic region involved in body axis organization and neural induction. Using time-lapse microscopic magnetic resonance imaging (MRI), we follow the pregastrula movements that lead to the formation of the DMZ of the stage 10 Xenopus embryo. 2D and 3D MRI time-lapse series reveal that pregastrular movements change the tissue architecture of the DMZ at earlier stages and in a different fashion than previously appreciated. Beginning at stage 9, epiboly of the animal cap moves tissue into the dorsal but not into the ventral marginal zone, resulting in an asymmetry between the dorsal and the ventral sides. Time-lapse imaging of labeled blastomeres shows that the animal cap tissue moves into the superficial DMZ overlying the deeper mesendoderm of the DMZ. The shearing of superficial tissue over the deeper mesendoderm creates the radial/vertical arrangement of ectoderm outside of mesendoderm within the DMZ, which is independent of involution and prior to the formation of the dorsal blastoporal lip. This tilting of the DMZ is distinct from, but occurs synchronously with, the vegetal rotation of the vegetal cell mass [R., Winklbauer, M., Schürfeld (1999). "Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus." Development. 126, 3703-3713.]. We present a revised model of gastrulation movements in Xenopus laevis.  相似文献   

16.
Cells in the dorsal marginal zone of the amphibian embryo acquire the potential for mesoderm formation during the first few hours following fertilization. An examination of those early cell interactions may therefore provide insight on the mechanisms important for organization of axial structures. The formation of mesoderm (notochord, somites, and pronephros) was studied by combining blastomeres from the animal pole region of Xenopus embryos (32- to 512-cell stages) with blastomeres from different regions of the vegetal hemisphere. The frequency of notochord and somite development was similar in combinations made with dorsal or ventral blastomeres, or with both. Our results show that during early cleavage stages the ventral half of the vegetal hemisphere has the potential to organize axial structures, a property previously believed to be limited to the dorsal region.  相似文献   

17.
18.
Horseradish peroxidase (HRP) was used as an intracellular lineage tracer in two experiments designed to reveal the sites of origin of cells that formed the duplicate embryo which developed in relation to an organizer grafted in the ventral marginal zone (VMZ) of Xenopus laevis embryos. In the first experiment a dorsal blastoporal lip fully labeled with HRP was grafted in the VMZ of an unlabeled embryo at the beginning of gastrulation. This resulted in development of a second embryo in which labeled cells, of graft origin, formed the notochord, and parts of the somites, endoderm, and neural tube. The second experiment was designed to show the sites of origin of the host's cells that formed parts of the induced embryo. HRP was injected into individual blastomeres in a series of Xenopus embryos at the 32-cell stage and each embryo received an unlabeled organizer graft in the VMZ at the beginning of gastrulation. In these embryos the lineages that contributed to the host's primary neural tube did not contribute any cells to the induced neural tube. All the cells in the induced neural tube which originated from the host were descendants of ventral blastomeres that did not contribute to the neural tube normally. This shows that the second neural tube is formed as a result of the action of the organizer on cells in its immediate vicinity which would not normally have entered neural pathways of differentiation.  相似文献   

19.
This paper describes a continuing effort to define the location and mode of action of morphogenetic determinants which direct the development of dorsal body axis structures in embryos of the frog Xenopus laevis. Earlier results demonstrated that presumptive endodermal cells in one vegetal quadrant of the 64-cell embryo can, under certain experimental conditions, induce partial or complete body axis formation by progeny of adjacent equatorial cells. (R.L. Gimlich and J.C. Gerhart, 1984, Dev. Biol. 104, 117-130). I have now assessed the importance of other blastomeres for embryonic axis formation in a series of transplantation experiments using cells from the equatorial level of the 32-cell embryo. The transplant recipients were embryos which had been irradiated with ultraviolet light before first cleavage. Without transplantation, embryos failed to develop the dorsal structures of the embryonic body axis. However, cells of these recipients were competent to respond to inductive signals from transplanted tissue and to participate in normal embryogenesis. Dorsal equatorial cells, but not their lateral or ventral counterparts, often caused partial or complete body axis development in irradiated recipients, and themselves formed much of the notochord and some prechordal and somitic mesoderm. These are the same structures that they would have formed in the normal donor. Thus, the dorsal equatorial blastomeres were often at least partially autonomous in developing according to their prospective fates. In addition, they induced progeny of neighboring host cells to contribute to the axial mesoderm and to form most of the central nervous system. The frequency with which such transplants caused complete axis formation in irradiated hosts increased when they were made at later and later cleavage stages. In contrast, the inductive activity of vegetal cells remained the same or declined during the cleavage period. These and other results suggest that the egg cytoplasmic region containing "axial determinants" is distributed to both endodermal and mesodermal precursors in the dorsal-most quadrant of the early blastula.  相似文献   

20.
The appearance of bottle cells at the dorsal vegetal/marginal boundary of Xenopus embryos marks the onset of blastopore formation. The conditions leading to this epithelial activity were investigated by inducing bottle cells ectopically in the animal region with VegT or different members of the transforming growth factor (TGF)-beta family. Morphological studies on the ectopic bottle cells indicate their close similarity to the endogenous bottle cells at the dorsal blastopore lip. The subepithelial cells of the induced animal region express mesodermal genes in a pattern reminiscent to that observed on the dorsal lip. Relating this expression pattern to the position of the ectopic bottle cells leads to the conclusion that bottle cells form in regions of high TGF-beta signalling. The specific inhibitory effects of cerberus on ectopically induced bottle cells revealed that nodal related growth factors are the intrinsic signals that elicit bottle cell formation in the normal embryo. In addition, fibroblast growth factor signalling is an essential precondition for this epithelial response as it is for mesoderm formation. We conclude that bottle cell formation in the epithelial layer of the gastrula is closely linked to mesodermal patterning in the subepithelial tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号