首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Disturbance may play an important role in generating patterns of abundance and distribution of biotic assemblages, particularly if its impact differs among habitat patches. Despite much speculation concerning the probable importance of spatial variation in the response of stream fauna to flooding, empirical work on patch-specific responses to spates is largely lacking. Floods typically reduce the abundance of lotic invertebrates dramatically in open-channel areas. We conducted a set of experiments to determine if faunal abundances are less affected in patches more sheltered due to the presence of woody debris dams. Specifically, we tested two hypotheses using chironomids and copepods living in a warmwater, 4th order stream: (1) the effect of flooding on the fauna varies between patches associated with debris dams versus the open channel, and (2) the absence of woody debris in a stream impedes faunal recovery throughout the channel following floods. We tested the first hypothesis by quantifying faunal abundances prior to, during, and following two floods in four patch types: mid-channel sandy patches distant from dams, coarse sediments associated with dams, fine sediments associated with dams, and leafy debris in dams. The second hypothesis was tested by removing all of the woody debris from two stretches of the stream and comparing the impact of a flood on fauna in debris-removed versus control stretches. Across all of the eight study dams, there were patchspecific faunal responses to two floods. Removal of woody debris from the stream did not prevent faunal recovery throughout the channel; however, the presence of woody debris dams did confer greater resistance of fauna to floods (as measured by no decrease in abundance during flooding) in two patch types. Abundances of chironomids and, to a lesser extent, copepods in the leafy debris of dams and in fine sediment patches associated with some dams either did not change or increased during floods, despite the fact that abundances in the dominant patch type of the stream (the sandy mid-channel) were reduced by 75–95%. All instances of faunal increase were limited to fine sediment patches associated with dams, thus entire dams cannot be labeled as flow refugia per se. Statistically, we distinguished fine patches which accumulated animals during floods from the other fine patches based on two physical attributes. Patches accumulating animals were all characterized by low water flux and nearbed flow, which likely contributed to the retention and/or passive deposition of animals. Whole dam attributes (e.g. dam size or complexity) were not useful in predicting which of the dams would accumulate animals in their fine sediments during flooding. Although structural complexity — here in the form of wood and leafy debris — is clearly important in generating biotic pattern in many ecosystems, our work underscores the need to understand what processes are responsible for the link between physical structure and biotic pattern.  相似文献   

2.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

3.
1. The coexistence of multiple species sharing similar but spatially fragmented resources (e.g. parasitoids sharing a host species) may depend on their relative competitive and dispersal abilities, or on fine‐scale resource partitioning. Four generalist and one specialist parasitoid species associated with the holly leaf miner, Phytomyza ilicis, in a woodland network of 127 holly trees were investigated. 2. To understand coexistence and persistence of these potential competitors, patterns of occurrence in relation to patch size and isolation, vertical stratum within patches, and incidence and abundance of potential competitors were documented. Field experiments creating empty habitat patches suggested that dispersal rather than local demographic processes determines abundance and incidence. 3. Parasitoids showed species‐specific responses to patch properties, with the incidence of species determined mostly by patch size. Parasitism rates were less clearly related to patch characteristics, but parasitism rates for most species were lower in patches where the numerically dominant parasitoid species, Chrysocharis gemma, was present. No evidence of vertical stratification was found in species composition or abundance within patches, making it unlikely that coexistence is enhanced by fine‐scale resource division. 4. Overall, the patterns detected may be attributed to the distribution of C. gemma and differences in species' ecology other than dispersal ability. The life history of C. gemma may allow it to pre‐emptively exploit a large fraction of the available hosts, avoiding direct competition with other parasitoids. In contrast, direct competition is more likely among the pupal parasitoids Cyrtogaster vulgaris, Chrysocharis pubicornis, and Sphegigaster flavicornis which have a similar biology and phenology. For these species, coexistence may be facilitated by contrasting incidence in relation to patch size and isolation.  相似文献   

4.
Patterns of vegetation and grasshopper community composition   总被引:6,自引:0,他引:6  
Summary A study was conducted to evaluate differences in rangeland grasshopper communities over environmental gradients in Gallatin Valley, Montana, USA. The concept of habitat type (Daubenmire 1966) was used as a basis for discriminating between groupings of patches based on vegetation. A total of 39 patches were selected that represented five recognized grassland habitat types (Mueggler and Stewart 1980), as well as two disturbed types (replanting within a known habitat type). Repeated sampling in 1988 of both the insect and plant communities yielded a total of 40 grasshopper (19 664 individuals) and 97 plant species. Detrended Correspondence Analysis (DCA) indicated that patch classifications based on presence and percent cover of plants were appropriate and showed good between-group (habitat type) separation for patches along gradients of precipitation/elevation and plant community complexity. Results from undisturbed habitats showed that plant and grasshopper species composition changed over observed environmental gradients and suggested that habitat type influenced not only species presence, but also relative abundance. Discussion is presented that relates results with patch-use and core and satellite species paradigms.  相似文献   

5.
Questions: 1. Do the species composition, richness and diversity of sapling communities vary significantly in differently sized patches? 2. Do forest patches of different sizes differ in woody plant colonization patterns? Location: São Francisco de Paula, Rio Grande do Sul, Brazil, 29°28'S,50°13'W. Methods: Three woody vegetation types, differing in structural development (patch size) and recovering for 10 years from cattle and burning disturbances, were sampled on grassland. We analysed the composition and complexity of the woody sapling communities, through relative abundance, richness and diversity patterns. We also evaluated recruitment status (residents vs. colonizers) of species in communities occurring in different forest patch size classes. Results : 1. There is a compositional gradient in sapling communities strongly associated with forest patch area. 2. Richness and diversity are positively correlated to patch area, but only in poorly structured patches; large patches present richness and diversity values similar to small patches. 3. Resident to colonizer abundance ratio increases from nurse plants to large patches. The species number proportion between residents and colonizers is similar in small and large patches and did not differ between these patch types. 4. Large patches presented a high number of exclusive species, while nurse plants and small patches did not. Conclusions: Woody plant communities in Araucaria forest patches are associated with patch structure development. Richness and diversity patterns are linked to patch colonization patterns. Generalist species colonize the understorey of nurse plants and small patches; resident species cannot recruit many new individuals. In large patches, sapling recruitment by resident adults precludes the immigration of new species into the patches, limiting richness and diversity.  相似文献   

6.
Interference at the level of fine roots in the field was studied by detailed examination of fine root distribution in small soil patches. To capture roots as they occur in natural three-dimensional soil space, we used a freezing and slicing technique for microscale root mapping. The location of individual roots intersecting a sliced soil core surface was digitized and the identity of shrub and grass roots was established by a chemical technique. Soil patches were created midway between the shrub, Artemisia tridentata, and one of two tussock grasses, Pseudoroegneria spicata or Agropyron desertorum. Some soil patches were enriched with nutrients and others given only deionized water (control); in addition, patches were located between plants of different size combination (large shrubs with small tussock grasses and small shrubs with large tussock grasses). The abundance of shrub and grass roots sharing soil patches and the inter-root distances of individual fine roots were measured. Total average rooting density in patches varied among these different treatment combinations by only a factor of 2, but the proportion of shrub and grass roots in the patches varied sixfold. For the shrub, the species of grass roots sharing the patches had a pronounced influence on shrub root density; shrub roots were more abundant if the patch was shared with Pseudoroegneria roots than if shared with Agropyron roots. The relative size of plants whose roots shared the soil patches also influenced the proportion of shrub and grass roots; larger plants were able to place more roots in the patches than were the smaller plants. In the nutrient-enriched patches, these influences of grass species and size combination were amplified. At the millimeter- to centimeter-scale within patches, shrub and grass roots tended to segregate, i.e., avoid each other, based on nearest-neighbor distances. At this scale, there was no indication that the species-specific interactions were the result of resource competition, since there were no obvious patterns between the proportion of shrub and grass roots of the two species combinations with microsite nutrient concentrations. Other potential mechanisms are discussed. Interference at the fine-root level, and its species-specific character, is likely an influential component of competitive success, but one that is not easily assessed.  相似文献   

7.
Abstract The herpetofauna of 50 monsoon rainforest patches in the Top End of the Northern Territory was surveyed during the dry season of 1990. This fauna contains few obligate monsoon rainforest species, many species which favour this habitat as part of a broad habitat range and a large number of species (indeed most of the regional species pool) that occasionally occur within monsoon rainforests. The taxonomic composition of species favouring monsoon rainforests is a non-random selection from the regional pool, with relatively few species in the families Agamidae and Scincidae occurring commonly in monsoon rainforests. Environmental variation among the rainforest patches sampled was portrayed by ordination, with the first axis corresponding to an environmental gradient from coastal sites to inland rocky rainforests and the second a gradient from relatively dry thickets to tall dense rainforests close to water. The distributions of herpetofauna species were depicted on this ordination space. Most frog species occurred in relatively wet rainforests and most gecko species were relatively restricted to drier rainforests. A substantial component of the herpetofauna was associated with rainforests on rocky substrate. In contrast to this relatively good association with these defined gradients, there was little apparent influence of patch size or level of disturbance on the distribution of individual species of herpetofauna. Sampling month was related to the abundance of many species, with many frog species and some snake and skink species declining (but some skink and one frog species increasing) in abundance in rainforest patches during the late dry season. This seasonal change in abundance is not due to movements from rainforest patches to adjacent vegetation types (or vice versa) but rather to total landscape (cross-habitat) changes in abundance (or detectability). The species composition of patches tended to be idiosyncratic, with substantial variability in composition, even between nearby patches of like environment. Hence it is not possible to nominate a representative rainforest herpetofauna, and indeed a classification of all quadrats (including those from rainforests, rainforest edges and adjacent habitats) based on herpetofauna species composition grouped many non-rainforest quadrats with those from rainforests. There was no rainforest edge herpetofauna assemblage. The herpetofauna from rainforests of the Northern Territory was similar to but somewhat richer than that recorded from the even more attenuated monsoon rainforest area of the Kimberley of northwestern Australia, but shared relatively few species with a sampling from monsoon rainforests from western Cape York. Frog species were more likely to be recorded across these three regions than were snake species. The number of herpetofaunal species per patch was low compared to tropical forests in northeastern Australia, Asia and central America. The long dry season of the Top End may contribute to this impoverishment. However, the small total area of monsoon rainforests in this region, the current scattered network of patches and historical fluctuations in extent and distribution of this habitat are probably at least as important.  相似文献   

8.
Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more fragmented ones, including those with relatively low resource availability, because such habitat fragments have an important role to play for specialist species.  相似文献   

9.
Spatial distributional patterns of benthic diatoms and their relation to current velocity were investigated in an unshaded cobble-bottom reach of White Creek (Washington County, NY). On 27 August 1999, diatoms were sampled and current velocity and depth were measured on a regular square sampling grid with a grain size of 0.01 m2, interval of 0.5 m, and extent of 16 m2. The relative abundance of the 18 common diatom species enumerated in the 81 samples was subjected to detrended correspondence analysis (DCA). The first axis (DCA1) explained 51% of the variance in diatom data and separated the samples according to current regimes. The spatial autocorrelation of DCA1 sample scores in deposition and erosion regions of White Creek was determined by Moran's I statistic to indicate patch size. In White Creek the patch length of all diatom communities was more than 3.1 m, whereas the patch width was 1 m in the deposition region and 0.5 m in the erosion region. There were 5 dominant diatom taxa, Achnanthes minutissima Kütz. et vars, Fragilaria capucina Dezmazières et vars, F. crotonensis Kitt., Diatoma vulgaris Bory, and Synedra ulna (Nitz.) Ehr. et vars. The patch length of the dominant species varied from 1 to more than 4.1 m, whereas the patch width, if defined, was 0.5 m. Achnanthes minutissima and F. capucina, the two diatom species with the highest relative abundance, displayed spatially structured patches of low abundance and comparatively random patches of high abundance, suggesting broad scale abiotic control of species performance in low abundance regions and finer scale biotic control of high abundance areas. Another objective of this study was to test the hypothesis that higher current velocities, which generally impede immigration, would increase randomness and complexity (i.e. homogeneity of diatom distributional patterns). The spatial complexity in low versus high velocity transects was determined by calculating the respective fractal dimension (D) of DCA1 scores. D of DCA1 was higher in the higher current velocity transects, suggesting that spatial complexity and homogeneity of diatom communities increased in faster currents. Partial canonical correspondence analysis was conducted on diatom, environmental, and spatial data to assess how much of the variance in species distribution could be attributed to environmental (current velocity and depth) versus spatial factors. The variance of species data, explained by the environment (exclusively current velocity), was 38%; whereas space alone contributed only 10%, indicating that 1) current velocity was the major factor that controlled diatom distribution in streams and 2) there were other spatially dependent variables, most likely biotic, but their role in shaping diatom communities was minor.  相似文献   

10.
Bryan D. Watts 《Oecologia》1996,108(3):512-517
Community-level studies with finches have traditionally viewed local resources as the primary constrainst on local diversity. Patches have been considered to be self-contained and embedded in landscapes that were neutral with respect to the ecological processes under investigation. This study uses a factorial design to examine the relative roles of patch content and patch context in determining patterns of species richness. Sparrows were surveyed in small fallow patches that varied in both weed cover and the type of adjacent habitat. Species richness and total sparrow abundance were significantly influenced by both factors. Individual species were also influnced by both factors; however, responses were species-specific. Because occupation of particular plot types was conditional on their association with specific habitat types, the spatial patterning of species assemblages results from the configuration of patch types within the landscape.  相似文献   

11.
Townsend  Philip A. 《Plant Ecology》2001,156(1):43-58
This study quantified relationships between forest composition and flooding gradients on the Roanoke River floodplain, North Carolina. Because flooding is highly variable in time and space, the research was designed to determine the specific hydrological parameters that control woody species abundance on the landscape scale. I specifically tested the importance of spring vs. yearly flood duration, as well as flood duration during hydrologically wet vs. dry years. Field vegetation samples of woody species composition were integrated with spatial data from a Landsat Thematic Mapper (TM) classification and a flood simulation model derived in part from synthetic aperture radar (SAR) imagery. Flood simulations were output and summarized for the periods 1912–1950 (before dams were constructed on the river) and 1965–1996 (after all of the dams were completed). Tenth percentile (dry), median, and 90th percentile (wet) hydroperiod (flood duration) regimes were generated for the spring and year, both pre- and post-dam. Detrended correspondence analysis (DCA) was used to ordinate the plot data, and correlation/regression between ordination axis scores and the flood variables were used to explore the relationships between flooding and species composition. Nineteenth percentile hydroperiod (i.e., wet conditions) correlated most strongly with DCA axis 1 (r>0.9), indicating that inundation during extremely wet years strongly controls species composition on the floodplain. The results were used to quantitatively determine the niche width for both species and mapped vegetation classes in terms of number of days flooded annually and during the spring growth period. The results suggest that spring hydroperiod is an important mechanism that may drive competitive sorting along the flooding gradient, especially during the early years of succession (i.e., pre-dam, which represents the period during which most of the forests sampled were established), and that annual hydroperiod affects the relative dominance of species as the forests mature.  相似文献   

12.
Past studies with spatially structured herbivore populations have emphasized the primacy of intrinsic factors (e.g., patch quality), patch geometry (e.g., patch size and isolation), and more recently landscape context (e.g., matrix composition) in affecting local population abundance and dispersal rate. However, few studies have examined the relative importance of each factor, or how they might interact to affect herbivore abundance or dispersal. Here, we performed a factorial field experiment to examine the independent and interactive effects of patch quality (plant biomass, leaf protein, leaf phenolics) and matrix composition [mudflat or non-host grass (Bromus inermis)] on planthopper (Prokelisia crocea) emigration from host-plant patches (prairie cordgrass, Spartina pectinata). In addition, a field survey was conducted to examine the relative importance of patch quality, geography, and matrix composition on planthopper occupancy and density. In the experiment, we found that rates of emigration from low and intermediate quality patches were, on average, 21% percent higher for patches embedded in brome than mudflat. In contrast, the emigration rate was unaffected by matrix composition in nutrient-rich patches. Within matrix types, plant quality had little effect on emigration. In the survey, planthopper density and the patch occupancy rate of planthoppers increased nonadditively with increasing patch size and the percentage of the surrounding matrix composed of mudflat. This study suggests that landscape-level factors, such as the matrix, may be more important than factors intrinsic to the patches.  相似文献   

13.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

14.
Shahid Naeem 《Oecologia》1990,84(1):29-38
Summary Complex or non-additive differences in the distribution and abundance of arthropod species inhabiting the water-filled bracts ofHeliconia imbricata can be created by simple manipulations of resource levels. The primary resources for these assemblages are the corollas of the flowers that accumulate in the bracts. Removing or adding corollas to individual bracts changes the pattern in the abundance of arthropod species within each bract such that bracts with different treatments ultimately differ in composition and numerical associations among species. These results suggest that direct and indirect resource-mediated factors can structure or significantly affect the distribution and abundance of species in these and perhaps other assemblages. Thus, in natural communities, if resources are heterogeneous among patches (such as among the bracts in this study) structure in a given patch may be a function of the resource level of that patch and can differ significantly from neighboring patches that provide different resource levels.  相似文献   

15.
The relative importance of small forms of copepods has been historically underestimated by the traditional use of 200?C300-??m mesh nets. This work quantified the distribution and abundance of copepods, considering two size fractions (<300???m and >300???m), in superficial waters (9?m deep) of the Drake Passage and contributed to the knowledge of their interannual fluctuations among three summers. Four types of nauplii and eleven species of copepods at copepodite and adult stages were identified, with abundance values of up to 13 ind L?1 and 28,300???g C m?3. The <300-??m fraction, composed of Oithona similis, small cyclopoids and nauplii, dominated the copepod communities in the 3?years; it accounted for more than 77% of the total number and for between 40 and 63% of the total biomass. Changes in density and biomass values among the three cruises differed according to copepod size fraction and water mass; the >300-??m fraction showed no changes among the 3?years, both in Antarctic (density and biomass) and in Subantarctic waters (density), whereas the <300-??m fraction showed higher (density and biomass) values in 2001 both in Subantarctic and in Antarctic waters. Sea surface temperature and its anomaly accounted for the largest proportion of variability in copepod density and biomass, particularly for the <300-??m fraction.  相似文献   

16.
桂林岩溶石山青冈栎群落的数量分析   总被引:8,自引:0,他引:8  
胡刚  梁士楚  张忠华  谢强 《生态学杂志》2007,26(8):1177-1181
应用双向指示种分析(TWINSPAN)和除趋势对应分析(DCA)方法对桂林岩溶石山青冈栎群落进行数量分类与排序。通过TWINSPAN分类,将青冈栎群落60个样方划分为8个群丛类型,探讨了各群丛类型的基本特征。结果表明:DCA排序与TWINSPAN分类结果较一致,DCA排序较好地体现了各群丛类型与环境因子的相互关系,DCA第一排序轴主要反映了坡度的变化梯度;DCA排序图的对角线基本体现了坡向的变化梯度。坡度的变化是影响岩溶石山青冈栎群落物种组成与分布的重要生态因子。  相似文献   

17.
Nagasawa  Kazuya 《Hydrobiologia》2001,(1):411-416
The population size of the salmon louse, Lepeophtheirus salmonis, was monitored annually in the summers of 1991–1997 by examining six species of Pacific salmon (Oncorhynchus spp.) caught by surface long-lines in oceanic offshore waters of the North Pacific Ocean and Bering Sea. The annual copepod population size on all salmonids caught was estimated by combining the calculated number of copepods carrying on each salmonid species. The copepod population fluctuated markedly from year to year, which resulted largely from marked annual changes in abundance of pink salmon (O. gorbuscha). Since pink salmon were most frequently and heavily infected and since their abundance changed every year, the copepod population was high in the years when this salmonid species was abundant, but low when it was rare. On the contrary, chum salmon (O. keta) did not show high prevalence and intensity of infection, but the annual abundance of this host species was consistently high, i.e. chum salmon carried many copepods every year. Copepods on other salmonid species (sockeye salmon O. nerka, coho salmon O. kisutch, chinook salmon O. tshawytscha, and steelhead trout O. mykiss) constantly formed a small percentage of the total copepod population. Both chum and pink salmon are the most important hosts in terms of their substantial contribution to support the copepod population, but the importance as hosts of each species is definitely different between the species. Chum salmon is a stable important host supporting the copepod population at a relatively high level every year, while the number of copepods on pink salmon annually exhibits marked fluctuations, and this salmonid species is regarded as an unstable important host.  相似文献   

18.
Eighteen black spruce (Picea mariana) stands, representing postfire ages of 26 to 120 yr, were surveyed for understorey vegetation and site/microsite characteristics at two spatial scales. This enabled comparison of within- versus among-stand compositional variation.Detrended correspondence analysis (DCA) ordination among the 18 stands revealed a complex age/moisture gradient. DCA ordination among 1 800 quadrats within the stands indicated a similar gradient with much compositional overlap. Quadrats were grouped, using two-way indicator species analysis (TWINSPAN), into 9 classes each representing a phase in understorey vegetation composition. These phases shifted in abundance from young to old stands with a high degree of concordance among replicates in the same age class. Understorey succession is strongly linked to the stages in tree growth, mortality and thinning coupled with the accumulation of site moisture.Abbreviations DCA Detrended Corrospondence Analysis  相似文献   

19.
In a shallow estuarine system near Beaufort, North Carolina, a period of high winter abundance of the mysidsMysidopsis bigelowi andNeomysis americana was associated with a change in zooplankton species composition, from dominance byAcartia tonsa to dominance byCentropages spp. andSaphirella sp. Both mysids feed onA. tonsa at higher rates than the other copepods. Experiments were carried out in 600–1 000 liter enclosures, in which the initial mysid density was manipulated and the effects on the enclosed copepod community were monitored. Mysid predation had a significant effect on copepod densities. The effects of mysid predation on species composition appeared to depend on the relationship between their prey preferences and the dominant copepod species present in the communities. Under conditions favoring dominance byA. tonsa, the preferred prey species, the results suggested that mysid predation may reduce dominance and increase diversity. But when the less preferredCentropages was dominant, mysid predation had no effect on species composition.  相似文献   

20.
A microcosm experiment was used to examine the effects of co-contamination with environmentally realistic but relatively low concentrations (expected to cause occasional to frequent adverse effects) of diesel fuel and metals (Cu, Cd, Hg, Cr, and Pb) on a saltmarsh benthic invertebrate community. After 30 days, exposure to metals did not influence abundances of major meiofaunal taxa (nematodes, ostracods, total copepods, nauplii, or chironomid larvae) or individual copepod species. Diesel exposure did not influence nematode or total copepod abundances, but significantly decreased abundances of ostracods, nauplii, and chironomids. For all taxa except copepods, the metals+diesel treatment yielded results similar to the effects of diesel alone. Although total copepod abundances were not significantly influenced by metals- or diesel-only treatments, abundances were significantly reduced in the metals+diesel treatment, a response that appeared consistent with a non-additive toxicological synergism between metals and diesel. Responses of copepod species to the diesel-only treatment were varied; species could be categorized as ‘diesel-sensitive’ (declined in abundance, presumably due to direct (toxic) effects), or ‘diesel-resistant’ (abundance either unchanged, or increased due to indirect (ecological) effects). In the metals+diesel treatment, the effects on ‘diesel-sensitive’ species were similar to those observed in the diesel-only treatment. However, abundances of ‘diesel-resistant’ species declined in the metals+diesel treatment, suggesting that metals interfere with the indirect effects that lead to enhanced abundances of some species and/or that metal+diesel combinations are uniquely toxic. Collectively, however, responses of most individual copepod species to metals+diesel suggested an additive toxicological action, and thus differed from the apparent synergism observed for total copepod abundance. The presence of diesel enhanced the retention of metals in sediments, which may have important toxicological implications. We conclude that, at relatively low concentrations of metal and diesel fuel co-contamination, both direct (toxic) and indirect effects influence faunal abundance; thus, reductions in abundance of major taxa may give the appearance of toxicological synergisms that are not manifested at the species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号