首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Du WD  Bao YD 《生理学报》1999,51(3):279-283
本文应用neo-Timm染色法,观察了鲫鱼视网膜内锌离子的分布情况以及明,暗适应条件下鲫鱼视网膜内锌离子分布的变化。结果发现,明适应条件下,外网层、部分光感受器、双极细胞、无长突细胞以及神经节细胞胞体锌离子着色明显,含锌光感受器和双极细胞的突起伸入外网层,暗适应条件下,外网层锌离子染色减弱或消失(P〈0.01)。外核层胞体锌离子染色阴性,少数散在分布的视锥细胞呈锌离子阳性,上述资料提示,明适应条件  相似文献   

2.
Schultz  K.  Goldman  D. J.  Ohtsuka  T.  Hirano  J.  Barton  L.  Stell  W. K. 《Brain Cell Biology》1997,26(10):651-666
L-glutamate, the main excitatory synaptic transmitter in the retina, is released from photoreceptors and evokes responses in second-order retinal neurons (horizontal, bipolar cells) which utilize both ionotropic and metabotropic types of glutamate receptors. In the present study, to elucidate the functional roles of glutamate receptors in synaptic transmission, we have identified a specific ionotropic receptor subunit (GluR4) and determined its localization with respect to photoreceptor cells in the outer plexiform layer of the goldfish retina by light and pre-embedding electron-microscopical immunocytochemistry. We screened antisera to mammalian AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate)-preferring ionotropic glutamate receptors (GluR 1–4) of goldfish retina by light- and electron-microscopical immunocytochemistry. Only immunoreactive (IR) GluR4 was found in discrete clusters in the outer plexiform layer. The cones contacted in this manner were identified as long-wavelength (“red”) and intermediate-wavelength (“green”) cones, which were strongly immunoreactive to monoclonal antibody FRet 43 and antisera to goldfish red and green-cone opsins; and short-wavelength (“blue”) cones, which were weakly immunoreactive to FRet 43 but strongly immunoreactive with antiserum to blue-cone opsin. Immunoblots of goldfish retinal homogenate with anti-GluR4 revealed a single protein at Mr=110 kDa. Preadsorption of GluR4 antiserum with either the immunizing rat peptide, or its goldfish homolog, reduced or abolished staining in retinal sections and blots. Therefore, we have detected and localized genuine goldfish GluR4 in the outer plexiform layer of the goldfish retina. We characterized contacts between photoreceptor cells and GluR4-IR second-order neurons in the electron microscope. IR-GluR4 was localized to invaginating central dendrites of triads in ribbon synapses of red cones, semi-invaginating dendrites in other cones and rods, and dendrites making wide-cleft basal junctions in rods and cones; the GluR4-IR structures are best identified as dendrites of OFF-bipolar cells. The results of our studies indicate that in goldfish retina GluR4-expressing neurons are postsynaptic to all types of photoreceptors and that transmission from photoreceptors to OFF-bipolars is mediated at least in part by AMPA-sensitive receptors containing GluR4 subunits.  相似文献   

3.
The structure of light- and dark-adapted retina of the black bass, Micropterus salmoides has been studied by light and electron microscopy. This retina lacks blood vessels at all levels. The optic fiber layer is divided into fascicles by the processes of Müller cells and the ganglion cell layer is represented by a single row of voluminous cells. The inner nuclear layer consists of two layers of horizontal cells and bipolar, amacrine and interplexiform cells. In the outer plexiform layer we observed the synaptic terminals of photoreceptor cells, rod spherules and cone pedicles and terminal processes of bipolar and horizontal cells. The spherules have a single synaptic ribbon and the pedicles possess multiple synaptic ribbons. Morphologically, we have identified three types of photoreceptors: rods, single cones and equal double cones which undergo retinomotor movements in response to changes in light conditions. The cones are arranged in a square mosaic whereas the rods are dispersed between the cones.  相似文献   

4.
The canonical flow of visual signals proceeds from outer to inner retina (photoreceptors→bipolar cells→ganglion cells). However, melanopsin-expressing ganglion cells are photosensitive and functional sustained light signaling to retinal dopaminergic interneurons persists in the absence of rods and cones. Here we show that the sustained-type light response of retinal dopamine neurons requires melanopsin and that the response is mediated by AMPA-type glutamate receptors, defining a retrograde retinal visual signaling pathway that fully reverses the usual flow of light signals in retinal circuits.  相似文献   

5.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

6.
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.  相似文献   

7.
Circadian rhythms are the endogenous oscillations, occurring with a periodicity of approximately twenty-four hours, in the biochemical and behavioral functions of organisms. In mammals, the phase and period of the rhythm are synchronized to the daily light-dark cycle by light input through the eye. Certain retinal degenerative diseases affecting the photoreceptor cells, both rods and cones, in the outer retina reveal that classical opsins (i.e., rhodopsin and color opsins located in these cells) are essential for vision, but are not required for circadian photoreception. The mammalian cryptochromes and melanopsin (and possibly other opsin family pigments) have been proposed as circadian photoreceptor pigments that exist in the inner retina. Genetic analysis indicates that the cryptochromes, which contain flavin and folate as the light-absorbing cofactors, are the primary circadian photoreceptors. The classical photoreceptors in the outer retina, and melanopsin or other minor opsins in the inner retina, may perform redundant functions in circadian rhythmicity.  相似文献   

8.
We studied the localization of metabotropic glutamate receptors (mGluRs) in the goldfish outer plexiform layer by light-and electron-microscopical immunohistochemistry. The mGluR1α antibody labeled putative ON-type bipolar cell dendrites and horizontal cell processes in both rod spherules and cone triads. Immunolabeling for mGluR2/3 was absent in the rod synaptic complex but was found at horizontal cell dendrites directly opposing the cone synaptic ribbon. The mGluR5 antibody labeled Müller cell processes wrapping rod terminals and horizontal cell somata. The mGluR7 antibody labeled mainly horizontal cell dendrites invaginating rods and cones and some putative bipolar cell dendrites in the cone synaptic complex. The finding of abundant expression of various mGluRs in bipolar and horizontal cell dendrites suggests multiple sites of glutamatergic modulation in the outer retina. Financial support for this work was provided by Conselho Nacional de Pesquisa (CNPq), Brazil (grant 200915/98-3 to C.J.)  相似文献   

9.
Summary A polyclonal antiserum to protein kinase C has been used to study the distribution of the enzyme antigenic sites in rat retina. The results indicate that the kinase is concentrated in photoreceptor outer segments as well as in the outer and inner plexiform layers. In identified components of retinal neuronal circuits, the kinase immunoreactivity is present in photoreceptor presynaptic terminals, in bipolar cell dendrites and axons, and probably in bipolar cell presynaptic terminals impinging on retinal ganglion cell dendrites. Thus, protein kinase C is positioned to play a role in specialized compartments of photoreceptor membrane and at both pre- and postsynaptic levels in the function of retinal neuronal circuits. Label in the nucleus is observed in retinal ganglion cells, but not bipolar or horizontal cells and probably not in amacrine cells. A role for protein kinase C in neuronal function at the level of the cell nucleus is therefore not likely to be universal, but to be determined by the particular properties of individual neuronal types.  相似文献   

10.
The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the southern fiddler ray or guitarfish (Trygonorhina fasciata). The duplex retina of this species contains only rods and single cones in a ratio of about 40:1. No multiple receptors (double cones), no repeating pattern or mosaic of photoreceptors and no retinomotor movements of these photoreceptors were noted. The rods are cylindrical cells with inner and outer segments of the same diameter. Cones are shorter, stouter cells with a conical outer segment and a wider inner segment. Rod outer segment discs display several irregular incisures to give a scalloped outline to the discs while cone outer segment discs have only a single incisure. In all photoreceptors a non-motile cilium joins the inner and outer segments. The inner segment is the synthetic centre of photoreceptors and in this compartment is located an accumulation of mitochondria (the ellipsoid), profiles of both rough and smooth endoplasmic reticulum, prominent Golgi zones and frequent autophagic vacuoles. The nuclei of rods and cones have much the same chromatin pattern but cone nuclei are invariably located against or particularly through the external limiting membrane (ELM). Numerous Landolt's clubs which are ciliated dendrites of bipolar cells as well as Müller cell processes project through the ELM, which is composed of a series of zonulae adherentes between these cells and the photoreceptors. The synaptic region of both rods (spherules) and cones (pedicles) display both invaginated (ribbon) synapses and superficial (conventional) synapses with cones showing more sites than the rods.  相似文献   

11.
Cone pedicles, the synaptic terminals of cone photoreceptors, are connected in the macaque monkey retina to several hundred postsynaptic dendrites. Using light and electron microscopy, we found underneath each cone pedicle a laminated distribution of dendritic processes of bipolar and horizontal cells. Superimposed were three strata of glutamate receptor (GluR) aggregates, including a novel layer of glutamate receptors clustered at desmosome-like junctions. They are, most likely, postsynaptic densities on horizontal cell dendrites. GABA(A) and GABA(C) receptors are aggregated on bipolar cell dendrites in a narrow band underneath the cone pedicle. Glutamate released from cone pedicles and GABA released from horizontal cell dendrites act not only through direct synaptic contacts but also (more so) through diffusion to the appropriate receptors.  相似文献   

12.
BACKGROUND: The visual system is now known to be composed of image-forming and non-image-forming pathways. Photoreception for the image-forming pathway begins at the rods and cones, whereas that for the non-image-forming pathway also involves intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin. In the mouse retina, the rod and cone photoreceptors become light responsive from postnatal day 10 (P10); however, the development of photosensitivity of the ipRGCs remains largely unexplored. RESULTS: Here, we provide direct physiological evidence that the ipRGCs are light responsive from birth (P0) and that this photosensitivity requires melanopsin expression. Interestingly, the number of ipRGCs at P0 is over five times that in the adult retina, reflecting an initial overproduction of melanopsin-expressing cells during development. Even at P0, the ipRGCs form functional connections with the suprachiasmatic nucleus, as assessed by light-induced Fos expression. CONCLUSIONS: The findings suggest that the non-image-forming pathway is functional long before the mainstream image-forming pathway during development.  相似文献   

13.
Using light and electron microscopy we found that the manatee retina has both rodlike and conelike photoreceptors in accord with its diurnal behavior pattern. Outer segment disks in both cell types appear to be enclosed along most of their length within the plasma membrane. The synaptic terminals are simple, with small, superficial postsynaptic contacts. The cones have long inner segments, short, conical outer segments and terminals with numerous synaptic ribbons and deeply embedded postsynaptic elements. There are two cone subclasses that may subserve color vision. Morphometry shows that there are more ganglion cells of small size ventrally, and that the thickness of the nerve fiber layer there is reduced, suggesting the presence of a specialized visual area in the retina. However, there were no pronounced differences in cone cell density in any of the regions examined.  相似文献   

14.
Non-image related responses to light, such as the synchronization of circadian rhythms to the day/night cycle, are mediated by classical rod/cone photoreceptors and by a small subset of retinal ganglion cells that are intrinsically photosensitive, expressing the photopigment, melanopsin. This raises the possibility that the melanopsin cells may be serving as a conduit for photic information detected by the rods and/or cones. To test this idea, we developed a specific immunotoxin consisting of an anti-melanopsin antibody conjugated to the ribosome-inactivating protein, saporin. Intravitreal injection of this immunotoxin results in targeted destruction of melanopsin cells. We find that the specific loss of these cells in the adult mouse retina alters the effects of light on circadian rhythms. In particular, the photosensitivity of the circadian system is significantly attenuated. A subset of animals becomes non-responsive to the light/dark cycle, a characteristic previously observed in mice lacking rods, cones, and functional melanopsin cells. Mice lacking melanopsin cells are also unable to show light induced negative masking, a phenomenon known to be mediated by such cells, but both visual cliff and light/dark preference responses are normal. These data suggest that cells containing melanopsin do indeed function as a conduit for rod and/or cone information for certain non-image forming visual responses. Furthermore, we have developed a technique to specifically ablate melanopsin cells in the fully developed adult retina. This approach can be applied to any species subject to the existence of appropriate anti-melanopsin antibodies.  相似文献   

15.
16.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.  相似文献   

17.
Bovine retinae were stained immunocytochemically with antibodies against the calcium-binding protein, calbindin. Horizontal cells in the outer plexiform layer were heavily labelled. The processes of most horizontal cells were confined to the level of the outer plexiform layer, and the tips of their dendrites were positioned as the lateral elements of the cone triads, viz. the usual mammalian arrangement. However, some of the horizontal cells had additional thick processes descending to branch within the inner plexiform layer, where they were postsynaptic at bipolar cell dyads and where they also received input from amacrine cells. No output synapses of horizontal cells were observed in the inner plexiform layer.  相似文献   

18.
In the turtle retina, colour-dependent photoresponses could be recorded intracellularly from ganglion cells receiving only bipolar cell input. Thus, the mechanism for colour discrimination by these ganglion cells (type A) is contained in the outer plexiform layer of the retina and depends on interaction between horizontal and cone cells. Ganglion cells receiving an additional amacrine input (type B) are not influenced by colour, and have about 0.7 logarithmic unit lower absolute sensitivity to peak wavelength than have type A ganglion cells.  相似文献   

19.
Cone connections of the horizontal cells of the rhesus monkey's retina   总被引:3,自引:0,他引:3  
The presence in the rhesus monkey's retina of a second morphological type of horizontal cell (H2), described by Kolb et al. (1980), is confirmed. Both types of cell are here further described. Their cone connections are quantified and compared with those of mammals and other vertebrates. The dendrites and axons of the H2 type of cell contact only cones as do the dendrites of the H1 cell (originally described by Polyak (1941)) which has an axon contacting only rods. The dendrites of foveal H2 cells contact between 11 and 14 cones; those of H1 contact 7. The number of cones that each type of cell contacts increases with increasing distance from the fovea, so that, by 5-6 mm eccentricity, H2-type cells synapse with between 20 and 30 cones, and the H1 cells with 12-15. The qualitatively estimated coverage factors of each are 3 or 4; every cone synapses with more than one of both types. Neither type of horizontal cell makes chromatically specific connections that are anatomically recognizable, unlike the situation in some teleostean and turtle retinae. Individual horizontal cells, particularly those connected to foveal cones, may have different ratios of chromatic input. At equivalent eccentricities, up to about 6 mm from the fovea, the dendritic fields of H2 horizontal cells are about twice the size of H1 cells and contact about twice the number of cones. These relative differences are closely similar to those of the cat's horizontal cells and it is suggested that they are a basic feature of most placental mammals. The organization of foveal cone fibres within Henle's layer is described. The distribution of primate cone telodendria, gap junctions and synapses in the outer plexiform layer are briefly reviewed and compared with those of other vertebrate retinae.  相似文献   

20.
Substance P (SP) immunoreactivity in the guinea pig retina was studied by light and electron microscopy. The morphology and distribution of SP-immunoreactive neurons was defined by light microscopy. The SP-immunoreactive neurons formed one population of amacrine cells whose cell bodies were located in the proximal row of the inner nuclear layer. A single dendrite emerged from each soma and descended through the inner plexiform layer toward the ganglion cell layer. SP-immunoreactive processes ramified mainly in strata 4 and 5 of the inner plexiform layer. SP-immunoreactive amacrine cells were present at a higher density in the central region around the optic nerve head and at a lower density in the peripheral region of the retina. The synaptic connectivity of SP-immunoreactive amacrine cells was identified by electron microscopy. SP-labeled amacrine cell processes received synaptic inputs from other amacrine cell processes in all strata of the inner plexiform layer and from bipolar cell axon terminals in sublamina b of the same layer. The most frequent postsynaptic targets of SP-immunoreactive amacrine cells were the somata of ganglion cells and their dendrites in sublamina b of the inner plexiform layer. Amacrine cell processes were also postsynaptic to SP-immunoreactive neurons in this sublamina. No synaptic outputs onto the bipolar cells were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号