首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of cofilin, an actin-remodeling protein, is required for T lymphocyte activation with regard to formation of the immunological synapse, cytokine production, and proliferation. In unstimulated T PBL (PB-T), cofilin is present in its Ser3-phosphorylated inactive form. Costimulation of TCR/CD3 and CD28 induces dephosphorylation and, thus, activation of cofilin. In this study we characterized the signaling cascades leading to cofilin activation in untransformed human PB-T. We show that a Ras-PI3K cascade regulates dephosphorylation of cofilin in PB-T. The GTPase Ras is a central mediator of this pathway; transient expression of an activated form of H-Ras in PB-T triggered the dephosphorylation of cofilin. Inhibition of either MAPK/ERK kinase or PI3K blocked both Ras-induced and costimulation-induced cofilin dephosphorylation in PB-T, showing that the combined activities of both signaling proteins are required to activate cofilin. That Ras functions as a central regulator of cofilin dephosphorylation after costimulation through CD3 x CD28 was finally proven by transient expression of a dominant negative form of H-Ras in primary human PB-T. It clearly inhibited costimulation-induced cofilin dephosphorylation, and likewise, activation of PI3K was diminished. Our data, in addition, demonstrate that regarding the downstream effectors of Ras, a clear difference exists between untransformed human PB-T and the T lymphoma line Jurkat. Thus, in PB-T the Ras signaling cascade is able to activate PI3K, whereas in Jurkat cells this is not the case. In addition to the insights into the regulation of cofilin, this finding discloses a to date unrecognized possibility of PI3K activation in T lymphocytes.  相似文献   

2.
The contractile activation of airway smooth muscle tissues stimulates actin polymerization, and the inhibition of actin polymerization inhibits tension development. Actin-depolymerizing factor (ADF) and cofilin are members of a family of actin-binding proteins that mediate the severing of F-actin when activated by dephosphorylation at serine 3. The role of ADF/cofilin activation in the regulation of actin dynamics and tension development during the contractile activation of smooth muscle was evaluated in intact canine tracheal smooth muscle tissues. Two-dimensional gel electrophoresis revealed that ADF and cofilin exist in similar proportions in the muscle tissues, and that approximately 40% of the total ADF/cofilin in unstimulated tissues is phosphorylated. Phospho-ADF/cofilin decreased concurrently with tension development in response to stimulation with acetylcholine (ACh) or potassium depolarization indicating the activation of ADF/cofilin. Expression of an inactive phospho-cofilin mimetic (cofilin S3E) but not wild type cofilin in the smooth muscle tissues inhibited endogenous ADF/cofilin dephosphorylation and ACh-induced actin polymerization. Expression of cofilin S3E in the tissues depressed tension development in response to ACh, but it did not affect myosin light chain phosphorylation. The ACh-induced dephosphorylation of ADF/cofilin required the Ca2+-dependent activation of calcineurin (PP2B). The results indicate that the activation of ADF/cofilin is regulated by contractile stimulation in tracheal smooth muscle and that cofilin activation is required for actin polymerization and tension development in response to contractile stimulation.  相似文献   

3.
We investigated the role of Ras in vascular endothelial growth factor (VEGF)-mediated signal transduction and the promotion of angiogenic changes primary endothelial cells. We find that VEGF potently induces Ras activation and that this step is essential for the stimulation by VEGF of several cellular changes associated with angiogenesis, including proliferation, migration, and branching morphogenesis in three-dimensional culture. Inhibition of Ras signaling induced subtle changes in the actin architecture but had no effect on the phosphatidylinositol 3-kinase (PI3K) or p38 signaling pathways. In contrast, activation of ERK was largely dependent on Ras. Although inhibiting ERK activity completely suppressed cell proliferation and partially blocked in vitro differentiation, neither ERK nor PI3K activity was required for VEGF-induced migration. These data provide the first direct demonstration that inhibition of Ras signal transduction is anti-angiogenic. Interestingly, VEGF signal transduction bifurcates both upstream and downstream of Ras, with different Ras-dependent signals controlling endothelial cell proliferation and migration, essential components of the angiogenic response.  相似文献   

4.
ADF/cofilin is a key regulator for actin dynamics during cytokinesis. Its activity is suppressed by phosphorylation and reactivated by dephosphorylation. Little is known, however, about regulatory mechanisms of ADF/cofilin function during formation of contractile ring actin filaments. Using Xenopus cycling extracts, we found that ADF/cofilin was dephosphorylated at prophase and telophase. In addition, constitutively active Rho GTPase induced dephosphorylation of ADF/cofilin in the egg extracts. This dephosphorylation was inhibited by Na(3)VO (4) but not by other conventional phosphatase-inhibitors. We cloned a Xenopus homologue of Slingshot phosphatase (XSSH), originally identified in Drosophila and human as an ADF/cofilin phosphatase, and raised antibody specific for the catalytic domain of XSSH. This inhibitory antibody significantly suppressed the Rho-induced dephosphorylation of ADF/cofilin in extracts, suggesting that the dephosphorylation at telophase is dependent on XSSH. XSSH bound to actin filaments with a dissociation constant of 0.4 microM, and the ADF/cofilin phosphatase activity was increased in the presence of F-actin. When latrunculin A, a G-actin-sequestering drug, was added to extracts, both Rho-induced actin polymerization and dephosphorylation of ADF/cofilin were markedly inhibited. Jasplakinolide, an actin-stabilizing drug, alone induced actin polymerization in the extracts and lead to dephosphorylation of ADF/cofilin. These results suggest that Rho-induced dephosphorylation of ADF/cofilin is dependent on the XSSH activation that is caused by increase in the amount of F-actin induced by Rho signaling. XSSH colocalized with both actin filaments and ADF/cofilin in the actin patches formed on the surface of the early cleavage furrow. Injection of inhibitory antibody blocked cleavage of blastomeres. Thus, XSSH may reorganize actin filaments through dephosphorylation and reactivation of ADF/cofilin at early stage of contractile ring formation.  相似文献   

5.
Neurofibromin is a neurofibromatosis type 1 (NF1) tumor suppressor gene product with a domain that acts as a GTPase-activating protein and functions, in part, as a negative regulator of Ras. Loss of neurofibromin expression in NF1 patients is associated with elevated Ras activity and increased cell proliferation, predisposing to a variety of tumors of the peripheral and central nervous systems. We show here, using the small interfering RNA (siRNA) technique, that neurofibromin dynamically regulates actin cytoskeletal reorganization, followed by enhanced cell motility and gross cell aggregation in Matrigel matrix. NF1 siRNA induces characteristic morphological changes, such as excessive actin stress fiber formation, with elevated negative phosphorylation levels of cofilin, which regulates actin cytoskeletal reorganization by depolymerizing and severing actin filaments. We found that the elevated phosphorylation of cofilin in neurofibromin-depleted cells is promoted by activation of a Rho-ROCK-LIMK2 pathway, which requires Ras activation but is not transduced through three major Ras-mediated downstream pathways via Raf, phosphatidylinositol 3-kinase, and RalGEF. In addition, the exogenous expression of the NF1-GTPase-activating protein-related domain suppressed the NF1 siRNA-induced phenotypes. Neurofibromin was demonstrated to play a significant role in the machinery regulating cell proliferation and in actin cytoskeletal reorganization, which affects cell motility and adhesion. These findings may explain, in part, the mechanism of multiple neurofibroma formation in NF1 patients.  相似文献   

6.
Beta-arrestins are pleiotropic molecules that mediate signal desensitization, G-protein-independent signaling, scaffolding of signaling molecules, and chemotaxis. Protease-activated receptor-2 (PAR-2), a Galpha(q/11)-coupled receptor, which has been proposed as a therapeutic target for inflammation and cancer, requires the scaffolding function of beta-arrestins for chemotaxis. We hypothesized that PAR-2 can trigger specific responses by differential activation of two pathways, one through classic Galpha(q)/Ca(2+) signaling and one through beta-arrestins, and we proposed that the latter involves scaffolding of proteins involved in cell migration and actin assembly. Here we demonstrate the following. (a) PAR-2 promotes beta-arrestin-dependent dephosphorylation and activation of the actin filament-severing protein (cofilin) independently of Galpha(q)/Ca(2+) signaling. (b) PAR-2-evoked cofilin dephosphorylation requires both the activity of a recently identified cofilin-specific phosphatase (chronophin) and inhibition of LIM kinase (LIMK) activity. (c) Beta-arrestins can interact with cofilin, LIMK, and chronophin and colocalize with them in membrane protrusions, suggesting that beta-arrestins may spatially regulate their activities. These findings identify cofilin as a novel target of beta-arrestin-dependent scaffolding and suggest that many PAR-2-induced processes may be independent of Galpha(q/11) protein coupling.  相似文献   

7.
Vascular smooth muscle cells (VSMCs) are subjected to various types of mechanical forces within the vessel wall. Although it is known that VSMCs undergo cell body reorientation in response to mechanical stimulation, how this mechanical stretch is transduced within the cell into biochemical signals causing cytoskeleton reorganization remains unclear. Cofilin, a protein that controls actin dynamics, is activated by Slingshot phosphatase-dependent serine 3 dephosphorylation by redox-dependent mechanisms. Nox4 is a main source of reactive oxygen species (ROS) in the vessel wall that localizes in association with the cytoskeleton. Therefore, we hypothesize that Nox4 mediates redox-dependent activation of cofilin, which is required for cytoskeletal reorganization and cell reorientation after mechanical stimulation. In this study, we found that mechanical stretch stimulates ROS production in VSMCs and that the signaling that leads to cell reorientation requires hydrogen peroxide but not superoxide. Indeed, mechanical stretch induces cofilin activation and stretch-induced cytoskeletal reorganization, and cell reorientation is inhibited in cells where cofilin activity has been downregulated. Importantly, Nox4-deficient cells fail to activate cofilin and to undergo cell reorientation, a phenotype rescued by the expression of a constitutively active cofilin mutant. Our results demonstrate that in VSMCs mechanical stimulation activates cofilin by a Nox4-dependent mechanism and that this pathway is required for cytoskeleton reorganization and cell reorientation.  相似文献   

8.
Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335–400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions.  相似文献   

9.
Porphyromonas gingivalis, a host-adapted opportunistic pathogen, produces a serine phosphatase, SerB, known to affect virulence, invasion and persistence within the host cell. SerB induces actin filament rearrangement in epithelial cells, but the mechanistic basis of this is not fully understood. Here we investigated the effects of SerB on the actin depolymerizing host protein cofilin. P. gingivalis infection resulted in the dephosphorylation of cofilin in gingival epithelial cells. In contrast, a SerB-deficient mutant of P. gingivalis was unable to cause cofilin dephosphorylation. The involvement of cofilin in P. gingivalis invasion was determined by quantitative image analysis of epithelial cells in which cofilin had been knocked down or knocked in with various cofilin constructs. siRNA-silencing of cofilin led to a significant decrease in numbers of intracellular P. gingivalis marked by an absence of actin colocalization. Transfection with wild-type cofilin or constitutively active cofilin both increased numbers of intracellular bacteria, while constitutively inactive cofilin abrogated invasion. Expression of LIM kinase resulted in reduced P. gingivalis invasion, an effect that was reversed by expression of constitutively active cofilin. These results show that P. gingivalis SerB activity induces dephosphorylation of cofilin, and that active cofilin is required for optimal invasion into gingival epithelial cells.  相似文献   

10.
Cofilin phosphatases and regulation of actin dynamics   总被引:1,自引:0,他引:1  
Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments in eukaryotes. The dephosphorylation of cofilin enables its actin severing and depolymerizing activity and drives directional cell motility, thus providing a simple phosphoregulatory mechanism for actin reorganization. To date, two cofilin-specific phosphatases have been identified: Slingshot and Chronophin. These cofilin phosphatases are unrelated in sequence and regulatory properties, each potentially providing a unique mechanism for cofilin activation under varying biological circumstances.  相似文献   

11.
Expression of activated Ras causes an increase in intracellular content of reactive oxygen species (ROS). To determine the role of ROS up-regulation in mediation of Ras-induced morphological transformation and increased cell motility, we studied the effects of hydrogen peroxide and antioxidant NAC on morphology of REF52 rat fibroblasts and their ability to migrate into the wound in vitro. Treatment with low dosages of hydrogen peroxide leading to 1.5- to 2-fold increase in intracellular ROS levels induced changes of cell shape, actin cytoskeleton organization, cell adhesions and migration resembling those in Ras-transformed cells. On the other hand, treatment with NAC attenuating ROS up-regulation in cells with conditional or constitutive expression of activated Ras led to partial reversion of morphological transformation and decreased cell motility. The effect of ROS on cell morphology and motility probably results from modulation of activity of Rac1, Rho, and cofilin proteins playing a key role in regulation of actin dynamics. The obtained data are consistent with the idea that ROS up-regulation mediates two key events in Ras-induced morphological transformation and cell motility: it is responsible for Rac1 activation and is necessary (though insufficient) for realization of Ras-induced cofilin dephosphorylation.  相似文献   

12.
GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.  相似文献   

13.
Entry of Salmonella into mammalian cells is strictly dependent on the reorganization of actin cytoskeleton induced by a panel of Salmonella type III secreted proteins. Although several factors have been identified to be responsible for inducing the actin polymerization and stability, little is known about how the actin depolymerization contributes to Salmonella-induced actin rearrangements. We report here that activity cycles of host actin depolymerizing factor (ADF and cofilin) are modulated by Salmonella during bacterial entry. Efficient Salmonella internalization involves an initial dephosphorylation of ADF and cofilin followed by phosphorylation, suggesting that ADF and cofilin activities are increased briefly. Expression of a kinase dead form of an ADF/cofilin kinase (LIM kinase 1) or a catalytically inactive ADF/cofilin phosphatase (Slingshot), but not constitutively active LIM kinase 1 or wild-type Slingshot, resulted in decreased invasion. These data suggest that ADF/cofilin activities play a key role in the actin polymerization/depolymerization process induced by Salmonella. The activation of ADF/cofilin is brief and has to be reversed to facilitate efficient bacterial entry. Surprisingly, co-expression of constitutive active ADF and cofilin prevented efficient Salmonella entry, whereas expression of either one alone had no effect. We propose that ADF and cofilin actin-dynamizing activities and their activity cycling via phosphorylation are required for efficient Salmonella internalization.  相似文献   

14.
Jung J  Kim M  Choi S  Kim MJ  Suh JK  Choi EC  Lee K 《Cellular signalling》2006,18(11):2033-2040
We previously reported that phosphorylated cofilin-triosephosphate isomerase (TPI) complex interacts with Na,K-ATPase and enhances the pump activity through the phosphorylation of cofilin via Rho-mediated signaling pathway. In this study, we tested the hypothesis that the dephosphorylation of cofilin may be induced through Na,K-ATPase inhibition by ouabain. The phosphorylation level of cofilin by ouabain which decreases in a time- and dose-dependent manner in various human cell lines, remains unchanged by pretreatment with Src inhibitor, PP2; epidermal growth factor receptor (EGFR) inhibitor, AG1478; Raf-1 kinase (Raf) inhibitor, GW5074; and ERK kinase (MEK) inhibitor, PD98059, and by transfection of Ras dominant negative mutant (RasN17). This suggests that ouabain dephosphorylates cofilin through the Src/EGFR/Ras/Raf/MEK pathway. Ouabain activates Ras/Raf/MEK pathway, but down-regulates Rho kinase (ROCK)/LIM kinase (LIMK)/cofilin pathway, implying that there may be a cross-talk by ouabain between the Ras/Raf/MEK and the ROCK/LIMK/cofilin pathways. Immunofluorescence and flow cytometry suggest that ouabain-induced active form of cofilin may be involved in cytoskeletal reorganization and cell volume regulation. Thus, these findings demonstrate a new molecular mechanism for the dephosphorylation of cofilin through the inhibition of Na,K-ATPase by ouabain.  相似文献   

15.
T cells infiltrate peripheral tissues to execute immunosurveillance and effector functions. For this purpose, T cells first migrate on the two‐dimensional (2D) surface of endothelial cells to undergo transendothelial migration. Then they change their mode of movement to undergo migration within the three‐dimensional (3D)‐extracellular matrix of the infiltrated tissue. As yet, no molecular mechanisms are known, which control migration exclusively in either 2D or 3D environments. Here, we describe a signalling module that controls T‐cell chemotaxis specifically in 3D environments. In chemotaxing T cells, Ras activity is spatially restricted to the lamellipodium. There, Ras initiates activation of MEK, which in turn inhibits LIM‐kinase 1 activity, thereby allowing dephosphorylation of the F‐actin‐remodelling protein cofilin. Interference with this MEK‐cofilin module by either inhibition of MEK or by knockdown of cofilin reduces speed and directionality of chemotactic migration in 3D‐extracellular matrices, but not on 2D substrates. This MEK‐cofilin module may have an important function in the tissue positioning of T cells during an immune response.  相似文献   

16.
Coordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms. Here, we show that SWAP-70 is an F-actin-bundling protein that oligomerizes through a Gln/Glu-rich stretch within a coiled-coil region. SWAP-70 bundles filaments in parallel and anti-parallel fashion through its C-terminal F-actin binding domain and delays dilution-induced F-actin depolymerization. We further demonstrate that SWAP-70 co-localizes and directly interacts with cofilin, an F-actin severing and depolymerization factor, and contributes to the regulation of cofilin activity in vivo. In line with these activities, upon stem cell factor stimulation, murine bone marrow-derived mast cells lacking SWAP-70 display aberrant regulation of F-actin and actin free barbed ends dynamics. Moreover, proper stem cell factor-dependent cofilin activation via dephosphorylation and subcellular redistribution into a detergent-resistant cytoskeletal compartment also require SWAP-70. Together, these findings reveal an important role of SWAP-70 in the dynamic spatiotemporal regulation of F-actin networks.  相似文献   

17.
Phagocytes play a central role in the host defense system, and the relationship between the mechanism of their activation and cytoskeletal reorganization has been studied. We have previously reported a possible involvement of cofilin, an actin-binding protein, in phagocyte functions through its phosphorylation/dephosphorylation and translocation to the plasma membrane regions. In this work, we have obtained a new line of evidence showing an important role of cofilin in phagocyte functions using the mouse macrophage cell line J774.1 and an antisense oligonucleotide to cofilin. Upon stimulation with opsonized zymosan (OZ), cofilin was phosphorylated, and it accumulated around phagocytic vesicles. As the antisense oligonucleotide to cofilin, a 20-mer S-oligo corresponding to the sequence including the AUG translational initiation site was found to be effective. In the cells treated with the antisense oligonucleotide, the amount of cofilin was less than 30% of that in the control cells, and the level of F-actin was two or three times higher than that in the control cells before and throughout the cell activation. In the antisense oligonucleotide-treated cells, OZ-triggered superoxide production was three times faster than that in the control cells. Furthermore, phagocytosis of OZ was enhanced by the antisense. These results show that cofilin plays an essential role in the control of phagocyte function through regulation of actin filament dynamics.  相似文献   

18.
The mitogen activated protein (MAP) kinase cascade represents one of the major regulator of cell growth by hormones and growth factors. However, although the activation of this intracellular pathway has been often regarded as mediator of cell proliferation, in many cell types the increase in MAP kinase (also called extra-cellular signal regulated kinase: ERK) activity may result in cell growth arrest, depending on the length or the intensity of the stimulation. In this review we examine recent data concerning the effects of somatostatin on the MAP kinase cascade through one of its major receptor subtype, the somatostatin receptor 1 (SSTR1), stably expressed in CHO-K1 cells. Somatostatin inhibits the proliferative effects of basic FGF (bFGF) in CHO-SSTR1 cell line. However, in these cells, somatostatin robustly activates the MAP kinase and augments bFGF-induced stimulation of ERK. We show that the activation of ERK via SSTR1 is mediated by the betagamma subunit of a pertussis toxin-sensitive G-protein and requires both the small G protein Ras and the serine/threonine kinase Raf-1. Moreover the phosphatidyl inositol-3kinase and the cytosolic tyrosine kinase c-src participate in the signal transduction regulated by SSTRI to activate ERK, as well as it is involved the protein tyrosine phosphatase (PTP) SHP-2. Previous studies have suggested that somatostatin-stimulated PTP activity mediates the growth inhibitory actions of somatostatin, in CHO-SSTR1 cells. Thus, the activation of SHP-2 by SSTR1 may mediate the antiproliferative activity of somatostatin. SHP-2 may. in turn, regulate the activity of kinases upstream of ERK that require tyrosine dephosphorylation to be activated, such as c-src. Finally, the synergism between somatostatin and bFGF in the activation of ERK results in an increased expression of the cyclin-dependent kinase inhibitor p21cip/WAF1 as molecular effector of the antiproliferative activity of somatostatin.  相似文献   

19.
Cofilin, an essential regulator of actin filament dynamics, is inactivated by phosphorylation at Ser-3 and reactivated by dephosphorylation. Although cofilin undergoes dephosphorylation in response to extracellular stimuli that elevate intracellular Ca2+ concentrations, signaling mechanisms mediating Ca2+-induced cofilin dephosphorylation have remained unknown. We investigated the role of Slingshot (SSH) 1L, a member of a SSH family of protein phosphatases, in mediating Ca2+-induced cofilin dephosphorylation. The Ca2+ ionophore A23187 and Ca2+-mobilizing agonists, ATP and histamine, induced SSH1L activation and cofilin dephosphorylation in cultured cells. A23187- or histamine-induced SSH1L activation and cofilin dephosphorylation were blocked by calcineurin inhibitors or a dominant-negative form of calcineurin, indicating that calcineurin mediates Ca2+-induced SSH1L activation and cofilin dephosphorylation. Importantly, knockdown of SSH1L expression by RNA interference abolished A23187- or calcineurin-induced cofilin dephosphorylation. Furthermore, calcineurin dephosphorylated SSH1L and increased the cofilin-phosphatase activity of SSH1L in cell-free assays. Based on these findings, we suggest that Ca2+-induced cofilin dephosphorylation is mediated by calcineurin-dependent activation of SSH1L.  相似文献   

20.
Nck-interacting kinase (NIK)-related kinase (NRK)/NIK-like embryo-specific kinase (NESK) is a protein kinase that belongs to the germinal center kinase family, and activates the c-Jun N-terminal kinase (JNK) signaling pathway. In this study, we examined the effect of NRK/NESK on actin cytoskeletal organization. Overexpression of NRK/NESK in COS7 cells induced accumulation of polymerized actin at the perinuclear. Phosphorylation of cofilin, an actin-depolymerizing factor, was increased in NRK/NESK-expressing HEK 293T cells. In addition, in vitro phosphorylation of cofilin was observed on NRK/NESK immunoprecipitates from HEK 293T cells expressing the kinase domain of NRK/NESK. The cofilin phosphorylation occurred at the serine residue of position 3 (Ser-3). Since the phosphorylation at Ser-3 inactivates the actin-depolymerizing activity of cofilin, these results suggest that NRK/NESK induces actin polymerization through cofilin phosphorylation. The cofilin phosphorylation did not appear to be mediated through activation of LIM-kinasel, a cofilin-phosphorylating kinase, or through the activation of JNK. Thus, cofilin is likely to be a direct substrate of NRK/NESK. NRK/NESK is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. Thus, NRK/NESK may be involved in the regulation of actin cytoskeletal organization in skeletal muscle cells through cofilin phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号