首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a general protocol for preparing protein-containing biofluids for 1H nuclear magnetic resonance (NMR) metabolomic studies. In this protocol, untreated samples are diluted in deuterated solvents to precipitate proteins and recover metabolites quantitated relative to standard reference compounds such as 3-trimethylsilylpropionic acid (TSP) and 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS). The efficacy of this protocol was tested using a bovine serum albumin/metabolite mix and human serum samples. This sample preparation method can be readily applied to any protein-containing biofluid for 1H NMR studies.  相似文献   

2.
1H, 13C and 15N chemical shift referencing in biomolecular NMR   总被引:25,自引:2,他引:23  
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS tetramethylsilane - TSP 3-(trimethylsilyl)-propionate, sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - TFE 2,2,2-trifluoroethanol - DMSO dimethyl sulfoxide  相似文献   

3.
Summary A marked dependence of the 1H resonances of TSP and DSS (internal standards) on the concentration of proteins in the molten globule state has been found. This result indicates that TSP and DSS interact with these proteins. Therefore, when the chemical shift is used as an indicator of the residual structure of proteins in the molten globule state, great care must be taken in using TSP and DSS.  相似文献   

4.
Summary The 13C chemical shifts for all of the protonated carbons of the 20 common amino acid residues in the protected linear pentapeptide Gly-Gly-X-Gly-Gly have been obtained in water at low pH as well as in aqueous solution containing 10, 20 and 30% acetonitrile or trifluoroethanol. Dioxane was used as an internal reference and its carbon chemical shift value was found to be 66.6 ppm relative to external TMS in water. Comparison of the different referencing methods for 13C chemical shifts in organic cosolvent mixtures showed that an external standard (either TMS or TSP capillary) was the most appropriate. In the present study, external TSP was chosen to define the 0 ppm of the 13C chemical shift scale. When the difference in referencing the dioxane carbon resonance is taken into account, the carbon chemical shift values of the amino acids in aqueous solution are similar to those previously reported (Richarz and Wüthrich (1978) Biopolymers, 17, 2133–2141; Howarth and Lilley (1979) Prog. NMR Spectrosc., 12, 1–40). The pentapeptides studied were assumed to be in a random coil conformation and the measured 13C chemical shifts were used as reference values to correlate carbon chemical shifts with the secondary structure of two well-characterized peptides, bombesin and the 1–29 amino acid fragment of Nle27 human growth hormone-releasing factor. In both cases, the C chemical shifts exhibited a characteristic positive deviation from the random coil values, which indicates the presence of -helices.  相似文献   

5.
The 1H NMR spectrum of urine exhibits a large number of detectable metabolites and is, therefore, highly suitable for the study of perturbations caused by disease, toxicity, nutrition or environmental factors in humans and animals. However, variations in the chemical shifts and intensities due to altered pH and ionic strength present a challenge in NMR-based studies. With a view towards understanding and minimizing the effects of these variations, we have extensively studied the effects of ionic strength and pH on the chemical shifts of common urine metabolites and their possible reduction using EDTA (ethylenediaminetetraacetic acid). 1H NMR chemical shifts for alanine, citrate, creatinine, dimethylamine, glycine, histidine, hippurate, formate and the internal reference, TSP (trimethylsilylpropionic acid-d4, sodium salt) obtained under different conditions were used to assess each effect individually. EDTA minimizes the frequency shifts of the metabolites that have a propensity for metal binding. Chelation of such metal ions is evident from the appearance of signals from EDTA complexed to divalent metal ions such as calcium and magnesium. Not surprisingly, increasing the buffer concentration or buffer volume also minimizes pH dependent frequency shifts. The combination of EDTA and an appropriate buffer effectively minimizes both pH dependent frequency shifts and ionic strength dependent intensity variations in urine NMR spectra. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
As small animal models of disease become more widely used, there is increasing importance and potential for characterizing their metabolomes. However, as the animal becomes smaller, the amounts of biofluids such as urine and cerebral spinal fluid available for metabolomic studies are more limited. Further, in multi-platform systems biology when the same small sample must be used for several analyses, it is a frequent requirement that no additions are made to the sample (even as simple as D2O or an NMR chemical shift reference) to maintain sample integrity. Herein we describe a method for high-throughput 1H-NMR studies using ~30 µl volumes, suitable for biofluid matrices. The compartmentalization of the sample and NMR standards, however, requires chemical shift corrections due to bulk magnetic susceptibility and ionic strength changes for metabolite profiling using a reference library or data-binning of the chemical shift axis. This set-up minimizes the cost of individual data collection per small animal and is suitable for high-throughput, longitudinal, multimodal metabolomic studies of biofluids available in limited quantities.  相似文献   

7.

Purpose

A reference reagent, 3-(trimethylsilyl) propionic-2, 2, 3, 3-d4 acid sodium (TSP), has been used frequently in nuclear magnetic resonance (NMR) and magnetic resonance spectroscopy (MRS) as an internal reference to identify cell and tissue metabolites, and determine chemical and protein structures. This reference material has been exploited for the quantitative and dynamic analyses of metabolite spectra acquired from cells. The aim of this study was to evaluate the cytotoxicity of TSP on three-dimensionally, agarose gel, cultured cells.

Materials and Methods

A human osteosarcoma cell line (MG-63) was selected, and cells were three dimensionally cultured for two weeks in an agarose gel. The culture system contained a mixture of conventional culture medium and various concentrations (0, 1, 3, 5, 7, 10, 20 30 mM) of TSP. A DNA quantification assay was conducted to assess cell proliferation using Quant-iT PicoGreen dsDNA reagent and kit, and cell viability was determined using a LIVE/DEAD Viability/Cytotoxicity kit. Both examinations were performed simultaneously at 1, 3, 7 and 14 days from cell seeding.

Results

In this study, the cytotoxicity of TSP in the 3D culture of MG-63 cells was evaluated by quantifying DNA (cell proliferation) and cell viability. High concentrations of TSP (from 10 to 30 mM) reduced both cell proliferation and viability (to 30% of the control after one week of exposure), but no such effects were found using low concentrations of TSP (0–10mM).

Conclusions

This study shows that low concentrations of TSP in 3D cell culture medium can be used for quantitative NMR or MRS examinations for up to two weeks post exposure.  相似文献   

8.
The ionization behavior of bile acids in different aqueous environments   总被引:1,自引:0,他引:1  
The ionization behavior of cholic acid, deoxycholic acid, and chenodeoxycholic acid in a variety of physiologically important molecular environments was studied using 13C NMR spectroscopy. The apparent pKa of the carboxyl group was determined from titration curves obtained from the dependence of the carboxyl carbon chemical shift on pH. Using 90% 13C isotopic substitution of the carboxyl carbon, a complete titration curve was obtained for cholate at a concentration below its critical micelle concentration and solubility limit in water. Incorporation of 12 mole % bile acid into mixed micelles with its taurine conjugate prevented precipitation of the unconjugated bile acid, and titration curves for cholic, deoxycholic, and chenodeoxycholic acids in the mixed micelles were obtained. The apparent pKa was also determined for 13C-enriched bile acids complexed with bovine serum albumin and in egg phosphatidylcholine vesicles. For monomers, micelles, and BSA complexes of all three bile acids and for deoxycholic and chenodeoxycholic acid in vesicles, one magnetic environment was observed. In contrast, two environments, both titratable, were detected for cholic acid in phosphatidylcholine vesicles. The apparent pKa's of the bile acids in the different environments ranged from 4.2 to 7.3. At pH 7.4, as monomers or bound to albumin, the bile acids were fully ionized, but when associated with phosphatidylcholine vesicles they were only partially ionized. In addition, aspects of the molecular motion and relative hydrophobicity of the bile acid carboxyl group in the environments studied were discerned from chemical shift, line-width, and lineshape data.  相似文献   

9.
Radiation accidents are rare events that induce radiation syndrome, a complex pathology which is difficult to treat. In medical management of radiation victims, life threatening damage to different physiological systems should be taken into consideration. The present study was proposed to identify metabolic and physiological perturbations in biofluids of mice during different phases of radiation sickness using 1H nuclear magnetic resonance (1H NMR) spectroscopy and pattern recognition (PR) technique. The 1H NMR spectra of the biofluids collected from mice irradiated with 5 Gray (Gy) at different time points during radiation sickness were analysed visually and by principal components analysis. Urine and serum spectral profile clearly showed altered metabolic profiles during different phases of radiation sickness. Increased concentration of urine metabolites viz. citrate, α ketoglutarate, succinate, hippurate, and trimethylamine during prodromal and clinical manifestation phase of radiation sickness shows altered gut microflora and energy metabolism. On the other hand, serum nuclear magnetic resonance (NMR) spectra reflected changes associated with lipid, energy and membrane metabolism during radiation sickness. The metabonomic time trajectory based on PR analysis of 1H NMR spectra of urine illustrates clear separation of irradiated mice group at different time points from pre dose. The difference in NMR spectral profiles depicts the pathophysiological changes and metabolic disturbances observed during different phases of radiation sickness, that in turn, demonstrate involvement of multiple organ dysfunction. This could further be useful in development of multiparametric approach for better evaluation of radiation damage as well as for medical management during radiation sickness.  相似文献   

10.
Summary Developing pea (Pisum sativum L.) seeds were chosen to evaluate the performance of various nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods of detecting sucrose in plants. The methods included chemical shift selective imaging (CHESS), heteronuclear correlation via13C-1H coupling (HMQC), and homonuclear correlation via1H-1H coupling (DQF). The same experiments were also performed on sucrose phantom samples to evaluate the methods in the absence of the line broadening observed in plant systems. Using the spin echo technique for multi-slice imaging, we could discern the detailed internal structure of the intact seed with a resolution of tens of microns. The proton spin-lattice relaxation time and linewidth as a function of the age of the seed were measured to optimize the efficiency of the NMR and MR experiments. The age-dependent changes in these NMR parameters are consistent with the accumulation of insoluble starch as age increases. Both the NMR and MRI results are in accord with the results of chemical analysis, which reveal that the sucrose concentration is higher in the embryo than in the seed coat, and glucose is at low concentration throughout the seed. Of the three methods for proton observation, the enhanced version of the CHESS approach (CD-CHESS) provides the best combination of sucrose detection and water suppression. Direct observation of13C is preferable to indirect detection using HMQC because of water signal bleed-through in samples with large (>200 Hz) linewidths.Abbreviations CD-CHESS continuous wave decoupling chemical shift selective imaging - CHESS chemical shift selective imaging - CSI chemical shift imaging - CW continuous wave - DQF homonuclear double quantum filtering - FOV field of view - FW fresh weight - GHMQC gradient version of the heteronuclear multiple quantum coherence  相似文献   

11.
A new computer program, DISCO, running under Windows, has been developed under the project CSA98P22 falling within the Competitive Support Activities initiative launched within the EU 4th Framework Programme. DISCO allows the calculation of the stepwise acid dissociation constants of polyprotic molecules in water and in complex media (i.e., biofluids, etc.) from nuclear magnetic resonance (NMR) data (chemical shifts) by means of two derivative-free methods: Pit-mapping and Simplex. DISCO performances were tested using simulated-unaffected by experimental error-data sets, for systems having up to seven equilibrium constants and experimental NMR data of spermine, 6-monofluorospermine, and 6,6-difluorospermine, dissolved in D(2)O and in physiological solution (D(2)O/NaCl). Results demonstrated that (i) DISCO enables the determination of pK(A) values with high precision even when small-sized raw data sets are employed, when chemical shifts are measured with low precision (the usual condition in biofluids due to the impossibility to obtain narrow line shape), and when the guess solution, necessary as an initial step of the mathematical iterative process, is fixed within a large interval of variation; (ii) DISCO always converges to the root; (iii) DISCO permits the calculation of pK(A) values which lie within the observed pH range, independent of the narrowness of the pH range.  相似文献   

12.
SIp NMR studies on microorganisms have been carried out with the cells embedded in agarose gel. The novel use of the gel for the NMR studies has advantages over the usual liquid suspensions in terms of improved reproducibility of data and cell viability, with no net loss of spectral quality. Polyphosphate formation in Escherichia coli was monitored continuously for up to 24 h and metabolic changes in yeast for 6 h. Changes of the intracellular pH during glycolysis in yeast were determined from the chemical shift of the internal Pi. NMR titration curves of Pi in the presence of Mg2+ indicate uncertainties in internal pH values estimated by this technique.  相似文献   

13.
The change in NMR chemical shift of methoxyl groups on coumarin trimethylsilyl ethers in benzene relative to chloroform or carbon tetrachloride correlates with the methoxyl position on the ring. The solvent shift is in the order 5,7 > 6 > 8.  相似文献   

14.
Albuterol is a β2-adrenergic agonist commonly used as a bronchdilator for the treatment of patients with asthma. We have developed an assay to determine plasma levels as low as 50 pg/ml of albuterol by gas chromatography-mass spectrometry (GC-MS). This assay utilizes isotopically labeled albuterol ([13C]albuterol) as an internal standard. In this assay albuterol and the internal standard are recovered from 1 ml of plasma using solid-phase extraction. The samples are then derivatized to trimethylsilyl ethers using N,O-bis(trimethylsilyl)trifluoro-acetamide with 1% trimethylchlorosilane. The samples are then analyzed by GC-MS with selected-ion monitoring (SIM) for the ions m/z 369.15 and 370.15. The method has been validated for a concentration range of 50–10000 pg/ml in plasma.  相似文献   

15.
A new set of (13)C and (1)H NMR chemical shifts of most common carrageenan types is given relative to DSS as the internal standard according to the IUPAC recommendations. Moreover, the chemical shifts of characteristic signals for pyruvate acetal and floridean starch are reported. Additionally, chemical shifts of common internal standards, such as methanol, DMSO and acetone, were measured at different temperatures and pH values.  相似文献   

16.
Calcium binding to bone gamma-carboxyglutamic acid protein (BGB) from calf has been studied using 43Ca NMR. The temperature dependence of the 43Ca NMR signal has been used to calculate the calcium ion exchange rate, koff. The dependence of the 43Ca NMR band shape on the [Ca2+]/[BGP] ratio fits well to a chemical equilibrium model having a single Ca2+-binding site with an association constant in the range of 5 X 10(3)-1 X 10(5) M-1. The pH dependence of the 43Ca NMR line-width shows a single apparent pKa value of 5.1.  相似文献   

17.
Summary NMR (nuclear magnetic resonance) spectroscopy was used to identify metabolic solutes in one normal and two habituated sugarbeet cell lines (Beta vulgaris L.altissima) obtained from the same mother strain. This technique was applied to investigate the intracellular naturally occurring13C isotopes (1.1% of total natural carbon) in living sugarbeet suspension cells and perchloric cell extracts. A combination of1H,13C, double-quantum filter correlation spectroscopy, heteronuclear multiple-bond correlation, and heteronuclear multiple-quantum coherence spectra from perchloric cell extracts enabled us to identify the main compounds in the different extract solutions. This was verified by spiking the solutions with small amounts of reference compounds to exclude the influence exerted by pH on the chemical shifts of the different compounds in the1H and13C spectra. The comparison of the three sugarbeet cell lines' NMR spectra showed the presence of sucrose, glucose, and fructose in the three strains. On the other hand, it revealed a strong discrepancy between metabolic solutes. Spectra from the habituated lines showed the presence of glutamine. Some amino acids such as alanine or valine, and unidentified signals corresponding to aromatic rings were only characterized in the habituated nonorganogenic cells. On the basis of these13C NMR data we assumed that the discrepancy between the different sugarbeet cell lines could be due to an increase in the metabolic activity of the habituated cell lines in relation to their autonomous growth.Abbreviations DQF-COSY double-quantum filter correlation spectroscopy - HO habituated organogenous - HNO habituated nonorganogenous - HMBC heteronuclear multiple-bond correlation - HMQC heteronuclear multiple-quantum coherence - N normal - NMR nuclear magnetic resonance - TSP sodium tetradeutero-3-(trimethylsilyl)-propionate  相似文献   

18.
23Na nuclear magnetic resonance (NMR) has previously been used to monitor Na+ translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na+. In this work, the 23Na NMR method was adapted for measurements of internal Na+ concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na+ translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na+ concentration than an external one.  相似文献   

19.
A sensitive method for the determination of lincomycin residues in fish tissues is described. Lincomycin was extracted from fish tissues with phosphate buffer (pH 4.5). The extract was concentrated with a C18 solid-phase extraction cartridge and further cleaned up by solvent extraction. Lincomycin was derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide to form a trimethylsilyl derivative before being analyzed by gas chromatography with nitrogen-phosphorus detection. Coumaphos was used as the internal standard. Assays showed good linearity in the range 25–250 ppb (ng/g) (r = 0.9994). Recoveries of fortified lincomycin at 50, 100 and 200 ppb were>80% with relative standard deviation <6%. The limit of detection of the method was 1.7 ppb and the limit of quantitation was 3.8 ppb.  相似文献   

20.
The 31P-NMR spectrum of intact human peripheral blood lymphocytes contains a large unidentified peak in the phosphomonoester region. The pH dependency of the 31P-NMR chemical shift of this peak in perchloric acid extracts of peripheral blood lymphocytes was recorded. It was compared to the pH dependency of the chemical shift of phosphorylethanolamine, phosphorylcholine, and ribose 5-phosphate in model solutions. An excellent agreement was found between the behavior of phosphorylethanolamine and the unidentified peak. To further substantiate this assignment phosphorylethanolamine was added to extracts and the pH titrations were repeated. The added phosphorylethanolamine gave exactly the same chemical shift as the unidentified peak and no difference was observed with pH titrations. The concentration of phosphorylethanolamine in human peripheral blood lymphocytes was estimated by 31P NMR to be 2.4 mumol/10(9) cells (range 0.9-4.3/10(9) cells, n = 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号