首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available.  相似文献   

2.
The archaebacterium Methanobacterium thermoautotrophicum was grown at 65 degrees C in H2- and Pi-limited chemostat cultures at dilution rates corresponding to 3- and 4-h doubling times, respectively. Under these conditions the steady state concentration of cyclic 2,3-diphosphoglycerate was 44 mM in the H2-limited cells and 13 mM in the cells grown under Pi limitation. Flux of Pi into the cyclic pyrophosphate pool was estimated by two 32P-labeling procedures: approach to isotopic equilibrium and replacement of prelabeled cyclic diphosphoglycerate with unlabeled compound. The results unequivocally demonstrate turnover of the phosphoryl groups; either both phosphoryl groups of the cyclic pyrophosphate leave together or the second leaves at a faster rate. The half-life of the rate-determining step for loss of the phosphoryl groups was approximately equal to the culture doubling time. The Pi flowing into the cyclic diphosphoglycerate pool accounted for 19% of the total Pi flux into Pi-limited cells and 43% of the total for H2-limited cells. The high phosphate flux through the large cyclic diphosphoglycerate pool suggests that this molecule plays an important role in the phosphorus metabolism of this methanogen.  相似文献   

3.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

4.
The development of Brassica nigra seedlings over 20 d of growth was disrupted by the fungicide phosphonate (Phi) in a manner inversely correlated with nutritional inorganic phosphate (Pi) levels. The growth of Pi-sufficient (1.25 mM Pi) seedlings was suppressed when 10, but not 5, mM Phi was added to the nutrient medium. In contrast, the fresh weights and root:shoot ratios of Pi-limited (0.15 mM) seedlings were significantly reduced at 1.5 mM Phi, and they progressively declined to about 40% of control values as medium Phi concentration was increased to 10 mM. Intracellular Pi levels generally decreased in Phi-treated seedlings, and Phi accumulated in leaves and roots to levels up to 6- and 16-fold that of Pi in Pi-sufficient and Pi-limited plants, respectively. Extractable activities of the Pi-starvation-inducible enzymes phosphoenolpyruvate phosphatase and inorganic pyrophosphate-dependent phosphofructokinase were unaltered in Pi-sufficient seedlings grown on 5 or 10 mM Phi. However, when Pi-limited seedlings were grown on 1.5 to 10 mM Phi (a) the induction of phosphoenolpyruvate phosphatase and inorganic pyrophosphate-dependent phosphofructokinase activities by Pi limitation was reduced by 40 to 90%, whereas (b) soluble protein concentrations and the activities of the ATP-dependent phosphofructokinase and pyruvate kinase were unaffacted. It is concluded that Phi specifically interrupts processes involved in regulation of the Pi-starvation response in B. nigra.  相似文献   

5.
Inorganic phosphate (Pi) enrichment of the Pi-limited green alga Selenastrum minutum in the dark caused a 2.5-fold increase in the rate of O2 consumption. Alkalization of the media during Pi assimilation was consistent with a H+/Pi cotransport mechanism with a stoichiometry of at least 2 H+ cotransported per Pi. Dark O2 consumption remained enhanced beyond the period of Pi assimilation and did not recover until the medium was reacidified. This result, coupled with an immediate decrease in adenylate energy charge following Pi enrichment, suggested that respiration is regulated by the ATP requirements of a plasmalemma H+-ATPase that is activated to maintain intracellular pH and provide proton motive force to power Pi uptake. Concentrations of tricarboxylic acid cycle intermediates decreased following Pi enrichment and respiratory CO2 efflux increased, indicating that the tricarboxylic acid cycle was activated to supply reductant to the mitochondrial electron transport chain. These results are consistent with direct inhibition of electron transport by ADP limitation. Enhanced rates of starch breakdown and increases in glycolytic metabolites indicated that respiratory carbon flow was activated to supply reductant to the electron transport chain and to rapidly assimilate Pi into metabolic intermediates. The mechanism that initiates glycolytic carbon flow could not be clearly identified by product:substrate ratios due to the complex nature of Pi assimilation. High levels of triose-P and low levels of phosphoenolpyruvate were the primary regulators of pyruvate kinase and phosphofructokinase, respectively.  相似文献   

6.
The effect of arsenate on strains dependent on the two major inorganic phosphate (Pi) transport systems in Escherichia coli was examined in cells grown in 1 mM phosphate medium. The development of arsenate-resistant Pi uptake in a strain dependent upon the Pst (phosphate specific transport) system was examined. The growth rate of Pst-dependent cells in arsenate-containing medium was a function of the arsenate-to-Pi ratio. Growth in arsenate-containing medium was not due to detoxification of the arsenate. Kinetic studies revealed that cells grown with a 10-fold excess of arsenate to Pi have almost a twofold increase in capacity (Vmax) for Pi, but maintained the same affinity (Km). Pi accumulation in the Pst-dependent strain was still sensitive to changes in the arsenate-to-Pi ratio, and a Ki (arsenate) for Pi transport of 39 microM arsenate was determined. The Pst-dependent strain did not accumulate radioactive arsenate, and showed only a transient decrease in intracellular adenosine triphosphate levels after arsenate was added to the medium. The Pi transport-dependent strain ceased growth in arsenate-containing media. This strain accumulated 74As-arsenate, and intracellular adenosine triphosphate pools were almost completely depleted after the addition of arsenate to the medium. Arsenate accumulation required a metabolizable energy source and was inhibited by N-ethylmaleimide. Previously accumulated arsenate could exchange with arsenate or Pi in the medium.  相似文献   

7.
Inorganic phosphate (Pi) uptake by Catharanthus roseus (L.) G. Don cells was studied in relation to its apparent uncontrolled uptake using 31P-nuclear magnetic resonance spectroscopy. Kinetics of Pi uptake by the cells indicated that apparent Km and Vm were about 7 [mu]M and 20 [mu]mol g-1 fresh weight h-1, respectively. Pi uptake in Murashige-Skoog medium under different Pi concentrations and different initial cell densities followed basically the same kinetics. When supplied with abundant Pi, cells absorbed Pi at a constant rate (Vm) for the first hours and accumulated it in the vacuole. As the endogenous pool expanded, the rate of Pi uptake gradually decreased to nil. Maximum Pi accumulation was 100 to 120 [mu]mol g-1 fresh weight if cell swelling during Pi uptake (about 2-fold in cell volume) was not considered. Results indicated that (a) the rate of Pi uptake by Catharanthus cells was independent of initial cell density and was constant over a wide range of Pi concentrations (2 mM to about 10 [mu]M) unless the cells were preloaded with excess Pi, and (b) there was no apparent feedback control over the Pi uptake process in the plasma membrane to avoid Pi toxicity. The importance of the tonoplast Pi transport system in cytoplasmic Pi homeostasis is discussed.  相似文献   

8.
Incubation of chick embryo fibroblasts in glucose-free medium resulted in a dramatic increase in the rate of 2-deoxy-D-glucose transport. The greatest increase in rate occurred during the first 20 hours of incubation in glucose-free medium and was blocked by actinomycin D, dordycepin, or cycloheximide. The conditions of 2-deoxy-D-glucose concentration and time of incubation with the sugar were determined where transport rather than phosphorylation was rate-limiting in sugar uptake. These studies demonstrated that the transport of 2-deoxy-D-glucose was rate-limiting for only 1 or 2 min when the concentration of sugar in the medium was near the Km for transport, i.e. 2mM. No difference was found in the level of hexokinase activity in homogenates prepared from cells incubated glucose-free medium or standard medium when either 2-deoxy-D-[14C]glucose or D-glucose was used as substrate. A kinetic analysis of the initial rates of 2-deoxy-D-glucose transport by Lineweaver-Burk plots showed that the Vmax for sugar transport increased from 18 to 95 nmol per mg of protein per min when fibroblasts were incubated in glucose-free medium for 40 hours. The Km remained constant at 2 mM. Analysis of the initial rates of 3-omicron-methyl-D-glucose transport by Lineweaver-Burk plots further substantiated that the increase in sugar transport was due to an increase in the Vmax for transport with the Km remaining constant. The activation energy for the transport reaction calculated from an Arrhenius plot was 17.4 Cal per mol for cells cultured in the standard medium and 17.2 Cal per mol for cells cultured in the glucose-free medium. These results are consistent with the interpretation that the Vmax increase observed in hexose-starved cells is due to an increase in the number of transport sites.  相似文献   

9.
Xylose-utilising yeasts were screened to identify strains with high xylose transport capacity. Among the fastest-growing strains in xylose medium, Candida intermedia PYCC 4715 showed the highest xylose transport capacity. Maximal specific growth rate was the same in glucose and xylose media (mu(max)=0.5 h-1, 30 degrees C). Xylose transport showed biphasic kinetics when cells were grown in either xylose- or glucose-limited culture. The high-affinity xylose/proton symport system (Km = 0.2 mM, Vmax = 7.5 mmol h-1 g-1) was more repressed by glucose than by xylose. The less specific low-affinity transport system (K = 50 mM, Vmax = 11 mmol h-1 g-1) appeared to operate through a facilitated-diffusion mechanism and was expressed constitutively. Inhibition experiments showed that glucose is a substrate of both xylose transport systems.  相似文献   

10.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In order to evaluate the influence of membrane fluidization on three apical transport systems and on a basolateral enzyme, and to analyse the mechanisms involved, we studied, in cultured rabbit proximal tubular cells, the effect of increasing concentrations of the local anesthetic drug benzyl alcohol on Na(+)-dependent uptakes of phosphate (Pi), methyl alpha-D-glucopyranoside (MGP), and L-alanine, as well as on basal and stimulated cyclic AMP content. At 10 mM, benzyl alcohol increased the Vmax of Pi uptake by 31%, decreased that of MGP uptake by 24%, and did not affect alanine uptake. Km values were not affected. Benzyl alcohol, up to 40 mM, increased in a concentration-dependent manner basal, PTH-stimulated, and cholera toxin-stimulated, but not forskolin-stimulated cyclic AMP accumulation. In the presence of 40 mM benzyl alcohol, the magnitude of PTH-induced inhibition of Pi uptake was enhanced from 11% to 24%. It is concluded that: (i) fluidization of apical membranes affected differently Na+/Pi, Na+/MGP, and Na+/alanine cotransports, reflecting differences in the lipidic environments of these transport system; (ii) fluidization of basolateral membranes enhanced PTH-stimulated cyclic AMP generation through improved coupling between the receptor-GS complex and the catalytic subunit of adenylate cyclase; (iii) these variations may result in physiological and pathophysiological modulation of the renal handling of solutes and of the phosphaturic effect of PTH.  相似文献   

12.
The hydrogen (H2) production potential of the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 was evaluated at 85 degrees C. In batch cultivation using a complex medium supplemented with elemental sulfur (S0), evolution of H2S and CO2 was observed in the gas phase. When S0 was omitted and pyruvate or starch was added in the medium, the cells produced H2 at high levels instead of H2S. As the level of H2 appeared to correlate with the specific growth rate, analysis in continuous cultures was performed to develop a continuous H2 production system. In a steady-state condition at a dilution rate of 0.2 h-1, a continuous H2 production rate (per gram dry weight, gdw) of 24.9 and 14.0 mmol gdw-1 h-1 was observed in media supplemented with pyruvate and starch, respectively. In both cultivations, a high accumulation of acetate and alanine was found as metabolites. When the dilution rates were elevated in the medium with pyruvate, steady-state growth was observed up to 0.8 h-1, and a maximum H2 production rate of 59.6 mmol gdw-1 h-1 was obtained. Based on the experimental results along with data of the entire genome sequence, the metabolic pathway of the strain relating to starch and pyruvate degradation is discussed.  相似文献   

13.
Apical membranes of renal epithelial cells were shown to be more rigid than other plasma membranes, due in part to the abundance of sphingomyelin among their constituent phospholipids. Tight junctions play a key role in maintaining differences between the apical and the basolateral domains of the plasma membrane with respect to their lipid composition and fluidity. To evaluate the influence of alterations of membrane fluidity on the activity of two apically located transport systems, we compared the effect of opening of tight junctions, by a preincubation period in calcium-deprived medium and of increasing fluidity, with benzyl alcohol, on Na-dependent uptakes of Pi and alpha-methyl-D-glucopyranoside (MGP) in intact, confluent LLC-PK1 cells and MDCK cells. Benzyl alcohol, at 10 mM, increased the Vmax of Pi uptake by 55 and 42% in LLC-PK1 cells and MDCK cells, respectively, but decreased the Vmax of MGP uptake in LLC -PK1 cells by 23%. Similarly to 10 mM benzyl alcohol, opening of tight junctions also increased the Vmax of Pi uptake by 45 and 46% in LLC-PK1 cells and MDCK cells, respectively, and depressed MGP uptake in LLC-PK1 cells by inducing a 15% decrease of the Vmax. None of the two maneuvers (i.e. addition of benzyl alcohol or opening of tight junctions) affected the Km values of the transport systems. From these results it is concluded that (i) the increase in membrane fluidity, achieved either by benzyl alcohol or by opening of tight junctions, affects Na-Pi and Na-glucose cotransports differently, reflecting differences in the lipid environments of the two transport systems, and (ii) membrane fluidity might play a physiological role in the modulation of the activity of transport systems.  相似文献   

14.
Clostridium thermoautotrophicum was adapted to minimal medium and cultivated at the expense of glucose, methanol, or H2-CO2. No supplemental amino acids were required for growth of the adapted strain, and nicotinic acid was the sole essential vitamin. Neither N2 nor nitrate could replace ammonium as the nitrogen source, and biotin was preferentially stimulatory for glucose cell lines. Growth in minimal medium yielded substantially higher acetate concentrations per unit of biomass formed than did growth in undefined medium.  相似文献   

15.
We have developed a model for characterizing calcium handling by the intact cardiac sarcoplasmic reticulum (SR) that yields data consistent with both mathematical simulations of in situ SR Ca2+ uptake and deduced behavior of the Ca2(+)-induced Ca2+ efflux channels in mechanically skinned single cardiac cells. In Na(+)-based media (37 degrees C, pH 7.2, 50 mM Pi, 10 mM MgATP, pMg 3.3, 10 mM phosphocreatine), SR 45Ca2+ uptake by digitonin-lysed rat myocytes as a function of free [Ca2+] peaked at pCa 6.2, declined until pCa 5.6 and increased again at lower pCa. When Ca2(+)-induced Ca2+ efflux was inhibited with 30 microM ruthenium red and 10 mM procaine, uptake was saturable with a Vmax of 160 +/- 5 nmol.min-1.mg-1, K0.5 of 500 nM free [Ca2+] and slope factor of 1.6. In K(+)-based media, maximum Pi- and oxalate-supported uptake increased to 220 and 260 nmol.min-1.mg-1, respectively. Without phosphocreatine, 45Ca2+ uptake declined under all conditions; this was correlated with a decrease in ATP/ADP. Vmax for 45Ca2+ uptake was increased 20% in hyperthyroid myocytes but depressed 30% in myocytes from heart failure-prone rats. In canine myocytes, Vmax was the same as in normal rat cells, but K0.5 was 830 nM. Without efflux inhibitors, ryanodine caused a concentration-dependent decline in net Pi-supported 45Ca2+ uptake at pCa 6.3 (K0.5 = 1 microM), while 10 microM ryanodine depressed uptake at all pCa between 7.2 and 5.6. Ruthenium red/procaine fully reversed this effect.  相似文献   

16.
A p-cresol (PCR)-degrading Pseudomonas sp. was isolated from creosote-contaminated soil and shown to degrade PCR by conversion to protocatechuate via p-hydroxybenzaldehyde (PBA) and p-hydroxybenzoate (PHB). Cells of the Pseudomonas sp. were immobilized in calcium alginate beads and in polyurethane foam. The relationship between the PCR concentration and the PCR transformation rate was investigated in batch and continuous culture bioreactors. The biodegradation kinetics of PBA and PHB also were investigated. In batch culture reactors, the maximum PCR degradation rate (Vmax) for the alginate-immobilized Pseudomonas sp. cells was 1.5 mg of PCR g of bead-1 h-1 while the saturation constant (Ks) was 0.22 mM. For PHB degradation, the Vmax was 0.62 mg of PHB g of bead-1 h-1 while the Ks was 0.31 mM. For polyurethane-immobilized Pseudomonas sp. cells, the Vmax of PCR degradation was 0.80 mg of PCR g of foam-1 h-1 while the Ks was 0.28 mM. For PHB degradation, the Vmax was 0.21 mg of PHB g of foam-1 h-1 and the Ks was 0.22 mM. In a continuous column alginate bead reactor, the Vmax for PCR transformation was 2.6 mg g of bead-1 h-1 while the Ks was 0.20 mM. The Vmax and Ks for PBA transformation in the presence of PCR were 0.93 mg g of bead-1 h-1 and 0.063 mM, respectively. When PHB alone was added to a reactor, the Vmax was 1.48 mg g of bead-1 h-1 and the Ks was 0.32 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Kinetics of p-cresol degradation by an immobilized Pseudomonas sp.   总被引:3,自引:1,他引:2       下载免费PDF全文
A p-cresol (PCR)-degrading Pseudomonas sp. was isolated from creosote-contaminated soil and shown to degrade PCR by conversion to protocatechuate via p-hydroxybenzaldehyde (PBA) and p-hydroxybenzoate (PHB). Cells of the Pseudomonas sp. were immobilized in calcium alginate beads and in polyurethane foam. The relationship between the PCR concentration and the PCR transformation rate was investigated in batch and continuous culture bioreactors. The biodegradation kinetics of PBA and PHB also were investigated. In batch culture reactors, the maximum PCR degradation rate (Vmax) for the alginate-immobilized Pseudomonas sp. cells was 1.5 mg of PCR g of bead-1 h-1 while the saturation constant (Ks) was 0.22 mM. For PHB degradation, the Vmax was 0.62 mg of PHB g of bead-1 h-1 while the Ks was 0.31 mM. For polyurethane-immobilized Pseudomonas sp. cells, the Vmax of PCR degradation was 0.80 mg of PCR g of foam-1 h-1 while the Ks was 0.28 mM. For PHB degradation, the Vmax was 0.21 mg of PHB g of foam-1 h-1 and the Ks was 0.22 mM. In a continuous column alginate bead reactor, the Vmax for PCR transformation was 2.6 mg g of bead-1 h-1 while the Ks was 0.20 mM. The Vmax and Ks for PBA transformation in the presence of PCR were 0.93 mg g of bead-1 h-1 and 0.063 mM, respectively. When PHB alone was added to a reactor, the Vmax was 1.48 mg g of bead-1 h-1 and the Ks was 0.32 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two types of arsenate-resistant mutants of Micrococcus lysodeikticus were found: (i) mutants that grow in the presence of 10 mM but not 1 mM phosphate (Pi) with low uptake rate for Pi and arsenate, and (ii) mutants able to grow in the presence of 10 mM and 1 mM Pi, with a near-normal uptake rate for Pi but a low one for arsenate. The Km values for Pi transport and the Ki values for its competitive inhibition by arsenate were similar for the mutants and the wild type. Similar to the wild type, the mutants also accumulated Pi to high concentrations. In all strains, the transport of Pi was subject to repression by Pi. Mutant types showed lower Vmax but unaltered Km values for arsenate as compared to the wild type, and they accumulated arsenate to markedly lower levels. The results suggest a two-component transport system common to Pi and arsenate.  相似文献   

19.
In an attempt to identify the renal Na+/Pi cotransporter, Xenopus laevis oocytes were used to express mRNA isolated from the renal cortex of rat kidney. Na(+)-dependent uptake of Pi in oocytes, injected with mRNA, resulted in an increase of 2-4-fold as compared to oocytes injected with water. Both the new expressed and endogenous Na(+)-dependent Pi uptake activity were inhibited with 2 mM phosphonoformic acid (PFA). Expression of Pi uptake into oocytes was dose-dependent with the amount of mRNA injected. When mRNA was fractionated on a sucrose gradient, a mRNA fraction of 2.5 kilobases expressed the Na+/Pi cotransport activity in oocytes. This fraction resulted in a 6-fold stimulation of Na(+)-dependent Pi transport when compared to oocytes injected with water. The Km and Vmax for Na(+)-dependent Pi uptake were 0.18 mM and 118 pmol/oocyte per 30 min, respectively.  相似文献   

20.
The uptake and efflux of cyclic adenosine 3',5'-monophosphate (3',5'-cAMP) by Escherichia coli membrane vesicles were studied. Metabolic energy was not required for the uptake process and was found to actually decrease the amount of 3',5'-cAMP found in the vesicles. 3',5'-cAMP uptake exhibits saturation kinetics (Km = 10 mM, Vmax = 2.8 nmol/mg of protein per min) and was competitively inhibited by a number of 3',5'-cAMP analogs. The uptake of 3',5'-cAMP was found to be sharply affected by a membrane phase transition. The excretion of 3',5'-cAMP was studied by using everted membrane vesicles. Efflux in this system was dependent upon metabolic energy and was reduced or abolished by uncouplers. Different energy sources powered efflux at different rates, showing a relationship between the degree of membrane energization and rate of excretion of 3',5'-cAMP. The efflux process also displayed saturation kinetics (Km = 10.0 mM, Vmax = 0.98 nmol/mg of protein per min) and was competitively inhibited by the same 3',5'-cAMP analogs and to the same degree as was the uptake process. 3',5'-cAMP was found to be chemically unaltered by both the uptake and excretion processes. These data are interpreted as showing that the uptake and excretion of 3',5'-cAMP in E. coli membrane vesicles are carrier-mediated phenomena, possibly employing the same carrier system. Uptake is by facilitated diffusion whereas efflux is via an energy-dependent, active transport process. Evidence is presented showing that cells can regulate the number of 3',5'-cAMP transport carriers. The rate of 3',5'-cAMP excretion is possibly regulated by both the degree of membrane energization and the number of carriers present per cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号