首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A very powerful method for detecting functional constraints operative in biological macromolecules is presented. This method entails performing a base permanence analysis of protein coding genes at each codon position simultaneously in different species. It calculates the degree of permanence of subregions of the gene by dividing it into segments, c codons long, counting how many sites remain unchanged in each segment among all species compared. By comparing the base permanence among several sequences with the expectations based on a stochastic evolutionary process, gene regions showing different degrees of conservation can be selected. This means that wherever the permanence deviates significantly from the expected value generated by the simulation, the corresponding regions are considered "constrained" or "hypervariable". The constrained regions are of two types: alpha and beta. The alpha regions result from constraints at the amino acid level, whereas the beta regions are those probably involved in "control" processing. The method has been applied to mitochondrial genes coding for subunit 6 of the ATPase and subunit 1 of the cytochrome oxidase in four mammalian species: human, rat, mouse, and cow. In the two mitochondrial genes a few regions that are highly conserved in all codon positions have been identified. Among these regions a sequence, common to both genes, that is complementary to a strongly conserved region of 12S rRNA has been found. This method can also be of great help in studying molecular evolution mechanisms.  相似文献   

2.
The 126Gln of human interleukin-2 (IL-2) is a conserved amino acid residue. After substitution of 126Gln with Asp, the binding abilities of this mutant to different composites of IL-2 receptor (R) subunits have been determined. Results show that 126AspIL-2 has higher affinity to IL-2R α β γ complex and normal affinity to IL-2R α β complex, but loses its binding ability to IL-2R β γ complex, demonstrating that the 126Gln is the residue of human IL-2 which binds to IL-2R γ subunit. Project supported by the “863” Project of China.  相似文献   

3.
Protein kinase CK2 is a highly conserved Ser/Thr protein kinase that is ubiquitous among eucaryotic organisms and appears to play an important role in many cellular functions. This enzyme in yeast has a tetrameric structure composed of two catalytic (α and/or α′) subunits and two regulatory β and β′ subunits. Previously, we have reported isolation from yeast cells four active forms of CK2, composed of αα′ββ′, α2ββ′, α′2ββ′ and a free α′-catalytic subunit. Now, we report that in Saccharomyces cerevisiae CK2 holoenzyme regulatory β subunit cannot substitute other β′ subunit and only both of them can form fully active enzymatic unit. We have examined the subunit composition of tetrameric complexes of yeast CK2 by transformation of yeast strains containing single deletion of the β or β′ regulatory subunits with vectors carrying lacking CKB1 or CKB2 genes. CK2 holoenzyme activity was restored only in cases when both of them were present in the cell. Additional, co-immunoprecypitation experiments show that polyadenylation factor Fip1 interacts with catalytic α subunits of CK2 and interaction with beta subunits in the holoenzyme decreases CK2 activity towards this protein substrate. These data may help to elucidate the role of yeast protein kinase CK2β/β′ subunits in the regulation of holoenzyme assembly and phosphotransferase activity.  相似文献   

4.
Gene digging     
A method termed “gene digging” has been developed based on our observation of stretches of highly conserved nucleotide sequence in the coding region of many genes across related species. Rabbit-specific nucleotide sequences corresponding to desired coding segments of 14 different genes were obtained with primers that were designed based on conserved nucleotide stretches. Our success in gene digging could be attributable to the method’s inherent ability to reduce the degeneracy of primers by more than two orders of magnitude (sometimes by more than three orders of magnitude) compared to primers designed from conserved amino acids. Our results not only demonstrate the value of the method, but also hint at a thus far unknown functional significance of conserved nucleotide stretches in the coding region of various genes. In our hands the method worked 14 out of 14 times indicating generality of the concept.  相似文献   

5.
Haemoglobins are sensitive to temperature and their properties mirror the thermal conditions encountered by species during their evolutionary histories. This paper provides data on molecular phylogeny of the haemoglobin chains of Cottoperca gobio, a notothenioid fish of sub-Antarctic latitudes, belonging to the basal family Bovichtidae. Unlike most Antarctic notothenioids, C. gobio has two major haemoglobins sharing the β chain. In the molecular phylogenetic analysis, the β chain is included in the clade of the “embryonic” or minor Antarctic globins. Although, in the majority of notothenioids, “embryonic” (minor) α and β globins are expressed in traces or small amounts in the adult stage, in C. gobio the present analysis supports the occurrence of a complete “switch” to exclusive expression of the embryonic β-globin gene in adult fish. The α and β chains sequences have been used to expand our knowledge of the evolution of notothenioid haemoglobins.The protein sequence data reported in this paper will appear in the UniProt Knowledge base under the accession number: P84652 (β chain), P84653 (α 1 chain).  相似文献   

6.
The chloroplast ATP synthase (ATPase) utilizes the energy of a transmembrane electrochemical proton gradient to drive the synthesis of ATP from ADP and phosphate. The chloroplast ATPase α and β subunits are the essential components of multisubunit protein complex. In this paper, the full-length cDNA and genomic DNA of ATPase α (designated as GbatpA) and β (designated as GbatpB) subunit genes were isolated from Ginkgo biloba. The GbatpA and GbatpB genes were both intronless. The coding regions of GbatpA and GbatpB were 1530 bp and 1497 bp long, respectively, and their deduced amino acid sequences showed high degrees of identity to those of other plant ATPase α and β proteins, respectively. The expression analysis by RT-PCR revealed that GbatpA and GbatpB both expressed in tissue-specific manners in G. biloba and might involve in leaf development. The recombinant GbATPB protein was successfully expressed in E. coli strain using pET28a vector with ATPase activity as three times high as the control, and the results showed that the molecular weight of the recombinant protein was about 54 kDa, a size that was in agreement with that predicted by bioinformatics analysis. This study provides useful information for further studying on overall structure, function and regulation of the chloroplast ATPase in G. biloba, the so-called “living fossil” plant as one of the oldest gymnosperm species. These authors contributed equally to this work  相似文献   

7.
Conserved synteny––the sharing of at least one orthologous gene by a pair of chromosomes from two species––can, in the strictest sense, be viewed as sequence conservation between chromosomes of two related species, irrespective of whether coding or non-coding sequence is examined. The recent sequencing of multiple vertebrate genomes indicates that certain chromosomal segments of considerable size are conserved in gene order as well as underlying non-coding sequence across all vertebrates. Some of these segments lost genes or non-coding sequence and/or underwent breakage only in teleost genomes, presumably because evolutionary pressure acting on these regions to remain intact were relaxed after an additional round of whole genome duplication. Random reporter insertions into zebrafish chromosomes combined with computational genome-wide analysis indicate that large chromosomal areas of multiple genes contain long-range regulatory elements, which act on their target genes from several gene distances away. In addition, computational breakpoint analyses suggest that recurrent evolutionary breaks are found in “fragile regions” or “hotspots”, outside of the conserved blocks of synteny. These findings cannot be accommodated by the random breakage model and suggest that this view of genome and chromosomal evolution requires substantial reassessment.  相似文献   

8.
Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the “helix-bundle crossing”. However, in the inwardly rectifying (Kir) potassium channel family, the role of this “hinge” residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper “hinge” residues are in close contact with the base of the pore α-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the “lower” gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.  相似文献   

9.

Background  

The vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions.  相似文献   

10.
11.
12.
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.  相似文献   

13.
The amino acid sequences of 22 α-amylases from family 13 of glycosyl hydrolases were analyzed with the aim of revealing the evolutionary relationships between the archaeal α-amylases and their eubacterial and eukaryotic counterparts. Two evolutionary distance trees were constructed: (i) the first one based on the alignment of extracted best-conserved sequence regions (58 residues) comprising β2, β3, β4, β5, β7, and β8 strand segments of the catalytic (α/β)8-barrel and a short conserved stretch in domain B protruding out of the barrel in the β3 →α3 loop, and (ii) the second one based on the alignment of the substantial continuous part of the (α/β)8-barrel involving the entire domain B (consensus length: 386 residues). With regard to archaeal α-amylases, both trees compared brought, in fact, the same results; i.e., all family 13 α-amylases from domain Archaea were clustered with barley pI isozymes, which represent all plant α-amylases. The enzymes from Bacillus licheniformis and Escherichia coli, representing liquefying and cytoplasmic α-amylases, respectively, seem to be the further closest relatives to archaeal α-amylases. This evolutionary relatedness clearly reflects the discussed similarities in the amino acid sequences of these α-amylases, especially in the best-conserved sequence regions. Since the results for α-amylases belonging to all three domains (Eucarya, Eubacteria, Archaea) offered by both evolutionary trees are very similar, it is proposed that the investigated conserved sequence regions may indeed constitute the ``sequence fingerprints' of a given α-amylase. Received: 3 June 1998 / Accepted: 20 August 1998  相似文献   

14.
The compositional distributions of large DNA fragments reflect those of the isochores that make up vertebrate genomes and can provide novel phylogenetic insights in the case of mammalian genomes (see Sabeur et al. 1993). This approach has been complemented here by an analysis of the compositional patterns of coding sequences and their codon positions (which also reflect the isochore pattern) and by a comparison of the base compositions of codon positions from homologous genes in a number of pairs of species. The results obtained using these two approaches support the existence of a general compositional pattern for mammalian genomes and of a distinct pattern for Myomorpha. The other two “special” patterns identified in a megachiropteran and in pangolin could not be tested here. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

15.
Behura SK  Severson DW 《Gene》2012,504(2):226-232
We present a detailed genome-scale comparative analysis of simple sequence repeats within protein coding regions among 25 insect genomes. The repetitive sequences in the coding regions primarily represented single codon repeats and codon pair repeats. The CAG triplet is highly repetitive in the coding regions of insect genomes. It is frequently paired with the synonymous codon CAA to code for polyglutamine repeats. The codon pairs that are least repetitive code for polyalanine repeats. The frequency of hexanucleotide and dinucleotide motifs of codon pair repeats is significantly (p<0.001) different in the Drosophila species compared to the non-Drosophila species. However, the frequency of synonymous and non-synonymous codon pair repeats varies in a correlated manner (r(2)=0.79) among all the species. Results further show that perfect and imperfect repeats have significant association with the trinucleotide and hexanucleotide coding repeats in most of these insects. However, only select species show significant association between the numbers of perfect/imperfect hexamers and repeat coding for single amino acid/amino acid pair runs. Our data further suggests that genes containing simple sequence coding repeats may be under negative selection as they tend to be poorly conserved across species. The sequences of coding repeats of orthologous genes vary according to the known phylogeny among the species. In conclusion, the study shows that simple sequence coding repeats are important features of genome diversity among insects.  相似文献   

16.
We describe the cloning and analysis of mRPA1, the cDNA encoding the largest subunit (RPA194) of murine RNA polymerase I. The coding region comprises an open reading frame of 5151 bp that encodes a polypeptide of 1717 amino acids with a calculated molecular mass of 194 kDa. Alignment of the deduced protein sequence reveals homology to the β′ subunit of Escherichia coli RNA polymerase in the conserved regions a-h present in all large subunits of RNA polymerases. However, the overall sequence homology among the conserved regions of RPA1 from different species is significantly lower than that observed in the corresponding β′-like subunits of class II and III RNA polymerase. We have raised two types of antibodies which are directed against the conserved regions c and f of RPA194. Both antibodies are monospecific for RPA194 and do not cross-react with subunits of RNA polymerase II or III. Moreover, these antibodies immunoprecipitate RNA polymerase I both from murine and human cell extracts and, therefore, represent an invaluable tool for the identification of RNA polymerase I-associated proteins. Received: 27 January 1997 / Accepted: 1 April 1997  相似文献   

17.
Ji LN  Du HN  Zhang F  Li HT  Luo XY  Hu J  Hu HY 《The protein journal》2005,24(4):209-218
Accumulating evidence shows that some amyloidogenic proteins contain core sequences, which are critical for their fibrillization. Core sequences of α-synuclein, β-amyloid peptide and prion protein usually reside in their unfolded regions and share a conserved consensus (VGGAVVAGV) designated as GAV homologue. Here we investigate the role of unfolded regions in fibrillization after GAV homologue is attached to the C-terminus or inserted into the loop regions of different host proteins, namely α -Syn1-65, γ-synuclein, E. coli thioredoxin and immunoglobulin G binding B1 domain of streptococcal protein G. The results imply that an unstructured region is required by GAV homologue for the fibrillization of host proteins. A number of amyloidogenic proteins with core sequences located in unstructured regions are summarized and discussed in details. The finding may provide further insight into the elucidating of the molecular mechanism underlying the fibrillization of α-Syn, Aβ and PrP as well as other amyloidogenic proteins.  相似文献   

18.
To explore how chemical structures of both nucleobases and amino acids may have played a role in shaping the genetic code, numbers of sp2 hybrid nitrogen atoms in nucleobases were taken as a determinative measure for empirical stereo-electronic property to analyze the genetic code. Results revealed that amino acid hydropathy correlates strongly with the sp2 nitrogen atom numbers in nucleobases rather than with the overall electronic property such as redox potentials of the bases, reflecting that stereo-electronic property of bases may play a role. In the rearranged code, five simple but stereo-structurally distinctive amino acids (Gly, Pro, Val, Thr and Ala) and their codon quartets form a crossed intersection “core”. Secondly, a re-categorization of the amino acids according to their β-carbon stereochemistry, verified by charge density (at β-carbon) calculation, results in five groups of stereo-structurally distinctive amino acids, the group leaders of which are Gly, Pro, Val, Thr and Ala, remarkably overlapping the above “core”. These two lines of independent observations provide empirical arguments for a contention that a seemingly “frozen” “core” could have formed at a certain evolutionary stage. The possible existence of this codon “core” is in conformity with a previous evolutionary model whereby stereochemical interactions may have shaped the code. Moreover, the genetic code listed in UCGA succession together with this codon “core” has recently facilitated an identification of the unprecedented icosikaioctagon symmetry and bi-pyramidal nature of the genetic code.  相似文献   

19.
白纹佛蝗线粒体全基因组序列   总被引:1,自引:0,他引:1  
通过长PCR扩增线粒体全基因组进行保守引物步移法结合克隆测序技术,对白纹佛蝗mtDNA 全序列进行了测定和分析.结果表明:白纹佛蝗线粒体基因组全长15 657 bp,包含13 个蛋白编码基因、22个tRNA 基因和2 个rRNA 基因以及1个非编码的控制区域,它们的长度分别是11 202 bp,1 486 bp,2 156 bp 和 728 bp.37个基因的位置与飞蝗的一致,有9对基因间存在41 bp重叠,重叠碱基数在 1~8 bp之间;基因间隔序列共计21处 126 bp,间隔长度从 1~20 bp不等,最大的基因间隔是20 bp,是在tRNALys 和 ATP8 基因之间.还对lrRNA和srRNA二级结构进行了预测,同时也对tRNA反密码子臂的碱基对类型以及不同链上蛋白编码基因的A/T,C/G组成偏向性进行了详细的讨论.  相似文献   

20.
The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号