首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The treatment of chloroplast coupling factor 1 (CF1) with dithiothreitol or with trypsin modifies the gamma subunit. Reduction of the gamma subunit disulfide bond in CF1 in solution with dithiothreitol enhances the dissociation of epsilon (Duhe, R. J., and Selman, B. R. (1990) Biochim. Biophys. Acta 1017, 70-78). The Ca(2+)-ATPase activity of either oxidized or reduced CF1 increases as the enzyme is diluted. Added epsilon subunit inhibits the Ca(2+)-ATPase activity of both forms of the diluted CF1, suggesting that epsilon dissociation is the cause of activation by dilution. Half-maximal activation occurred at much higher concentrations of the reduced CF1, indicating that reduction decreases the affinity for epsilon about 20-fold. Immunoblotting techniques show that there is only one epsilon subunit/CF1 in intact chloroplasts, in thylakoid membranes, and in solution. No epsilon is released from CF1 in thylakoids under conditions of ATP synthesis. The gamma subunit of CF1 in illuminated thylakoids is specifically cleaved by trypsin. CF1 purified from thylakoids treated with trypsin in the light is deficient in epsilon subunit, and has a high rate of ATP hydrolysis. Added epsilon neither inhibits the ATPase activity of, nor binds tightly to the cleaved enzyme.  相似文献   

2.
Fluorescent probes were attached to the single sulfhydryl residue on the isolated epsilon polypeptide of chloroplast coupling factor 1 (CF1), and the modified polypeptide was reconstituted with the epsilon-deficient enzyme. A binding stoichiometry of one epsilon polypeptide per CF1 was obtained. This stoichiometry corresponded to a maximum inhibition of the Ca2+-dependent ATPase activity of the enzyme induced by epsilon removal. Resonance energy transfer between the modified epsilon polypeptide and fluorescent probes attached to various other sites on the enzyme allowed distance measurements between these sites and the epsilon polypeptide. The epsilon-sulfhydryl is nearly equidistant from both the disulfide (23 A) and the dark-accessible sulfhydryl (26 A) of the gamma subunit. Measurement of the distance between epsilon and the light-accessible gamma-sulfhydryl was not possible due to an apparent exclusion of modified epsilon from epsilon-deficient enzyme after modification of the light-accessible site. The distances measured between epsilon and the nucleotide binding sites on the enzyme were 62, 66, and 49 A for sites 1, 2, and 3, respectively. These measurements place the epsilon subunit in close physical proximity to the sulfhydryl-containing domains of the gamma subunit and approximately 40 A from the membrane surface. Enzyme activity measurements also indicated a close association between the epsilon and gamma subunits: epsilon removal caused a marked increase in accessibility of the gamma-disulfide bond to thiol reagents and exposed a trypsin-sensitive site on the gamma subunit. Either disulfide bond reduction or trypsin cleavage of gamma significantly enhanced the Ca2+-ATPase activity of the epsilon-deficient enzyme. Thus, the epsilon and gamma polypeptides of coupling factor 1 are closely linked, both physically and functionally.  相似文献   

3.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The relationship between activation of the latent ATPase activity of isolated chloroplast coupling factor 1 (CF1) and reduction of a disulfide in the gamma subunit has been assessed. The sulfhydryl residues involved in the disulfide bond are distinct from residues normally accessible to maleimide modification during incubation of thylakoids in the dark or the light. Dithiothreitol-induced activation is time dependent, and correlates with reduction of the disulfide. Sulfhydryl residues exposed during activation can be reoxidized to disulfide by incubation with iodosobenzoate , with a concomitant loss of ATPase activity. Activation and deactivation are reversible, but deactivation is prevented by treatment of the reduced enzyme with N-ethylmaleimide. Heat activation does not reduce the disulfide bond unless dithiothreitol is present during activation. Prior heating of CF1, which partially activates the enzyme, renders the disulfide more susceptible to subsequent dithiol reduction. The activity obtained when heat and dithiothreitol are used together is approximately equal to the sum of the partial activations obtained with heat or dithiothreitol alone. Iodosobenzoate has no effect on heat-activated CF1. Enzyme activated by heating in the presence of dithiothreitol can be partially deactivated, consistent with reversal of the activity attributable to the dithiol effect. Fluorescence polarization of anilinonaphthylmaleimide bound to the reduced enzyme indicates that the sulfhydryl residues involved in the disulfide are in a less rigid environment than the other two sulfhydryl residues in the gamma subunit. Polarization of anilinonaphthylmaleimide bound to these sulfhydryls is reduced by heat treatment of CF1. The increased susceptibility of the disulfide to reduction upon heat treatment, and the activation of ATPase activity with or without disulfide bond cleavage are indicative of conformational changes within the gamma subunit that occur during the conversion of CF1 from a latent to an active ATPase. In addition the results are consistent with at least two distinct conformational forms of CF1 that can hydrolyze ATP.  相似文献   

5.
The activation by proteases of the Ca2+-dependent ATPase of chloroplast coupling factor 1 (CF1) has been investigated. Using low concentrations of papain and trypsin, the increase in ATPase activity and the degradation of the five subunits of CF1 were compared. Sodium dodecyl sulfate-gel electrophoresis of protease-treated CF1 revealed that the delta subunit was very rapidly degraded and that the alpha and beta subunits were clipped. The gamma and epsilon subunits were more resistant to digestion. The modification of the alpha subunit of latent CF1 most closely correlated with the activation of Ca2+-ATPase activity. Trypsin treatment of dithiothreitol-activated CF1 resulted in a very rapid increase in Ca2+-ATPase activity and a corresponding rapid cleavage of the gamma subunit to a 25,000-dalton species. With more prolonged treatment, the 25,000-dalton species was cleaved to fragments of 14,000 and 11,000-daltons. Dithiothreitol treatment did not alter the rate of attack on the other subunits. The gamma subunit of heat-activated CF1 was also more susceptible to protease digestion. The increased protease sensitivity of the gamma subunit of soluble CF1 after treatment with dithiothreitol or heat mimics the increased protease sensitivity of the gamma subunit of bound CF1 when thylakoids are treated with trypsin during illumination (Moroney, J. V., and McCarty, R. E. (1982) J. Biol. Chem. 257, 5915-5920). These results suggest that the conformational changes that occur when purified CF1 is exposed to dithiothreitol are similar to those that CF1 bound to thylakoid membranes undergoes under illumination.  相似文献   

6.
Activation of the ATPase activity and the exposition of a new adenine nucleotide binding site of chloroplast coupling factor 1 (CF1) by dithioerythritol at 25 degrees C were reversed by oxidants. The ATPase activity elicited by heat (63 degrees C, 4 min) was slightly inhibited by oxidants and was partially additive with the activity induced by dithioerythritol. Titration of the thiols of CF1 and determination of their subunit distribution before and after activation by dithioerythritol show an increase of the free groups from 8 to 10 with the appearance of the 2 new thiols on the gamma subunit. These thiols were available to reagents in nondenatured enzyme and were reoxidized to a disulfide bond by iodosobenzoate or CuCl2. It is concluded that the mechanisms of CF1 activation by dithioerythritol and by heat are different and that the former involves a net reduction of a disulfide bond of the gamma subunit.  相似文献   

7.
The ATPase activity of soluble chloroplast coupling factor (CF1) was irreversibly inactivated by phenylglyoxal, an arginine reagent. Under the conditions of inactivation, 2.48 mol of [14C]phenylglyoxal were incorporated per 400,000 g of enzyme when the ATPase was inactivated 50% by the reagent. Isolation of the component polypeptide subunits of the [14C]phenylglyoxal-modified enzyme revealed that the distribution of moles of labeled reagent/mol of subunit was the following: alpha, 0.37; beta, 0.40; gamma, 0.08; delta, none; epsilon, 0.03. CNBr treatment of the isolated alpha and beta subunits and fractionation of the peptides by gel electrophoresis revealed that the radioactivity bound to the alpha subunit was nonspecifically associated with several peptides, while a single peptide derived from the beta subunit contained the majority of the radioactivity associated with this subunit. After treating the isolated beta subunit with trypsin and Staphylococcus aureus protease, a major radioactive peptide was isolated with a sequence Arg-Ile-Thr-Ser-Ile-Lys. This sequence, when compared with the primary structure of the CF1 beta subunit as translated from the gene (Zurawski, G., Bottomley, W., and Whitfeld, P. R. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6260-6264) indicated that the arginine marked with the asterisk, the predominant residue modified by phenylglyoxal when the ATPase activity of CF1 is inactivated by the reagent, is Arg 312.  相似文献   

8.
Monoclonal antibodies (mAbs) have been made against each of the five subunits of ECF1 (alpha, beta, gamma, delta, and epsilon), and these have been used in topology studies and for examination of the role of individual subunits in the functioning of the enzyme. All of the mAbs obtained reacted with ECF1, while several failed to react with ECF1F0, including three mAbs against the gamma subunit (gamma II, gamma III, and gamma IV), one mAb against delta, and two mAbs against epsilon (epsilon I and epsilon II). These topology data are consistent with the gamma, delta, and epsilon subunits being located at the interface between the F1 and F0 parts of the complex. Two forms of ECF1 were used to study the effects of mAbs on the ATPase activity of the enzyme: ECF1 with the epsilon subunit tightly bound and acting to inhibit activity and ECF1* in which the delta and epsilon subunits had been removed by organic solvent treatment. ECF1* had an ATPase activity under standard conditions of 93 mumol of ATP hydrolyzed min-1 mg-1, cf. an activity of 7.5 units mg-1 for our standard ECF1 preparation and 64 units mg-1 for enzyme in which the epsilon subunit had been removed by trypsin treatment. The protease digestion of ECF1* reduced activity to 64 units mg-1 in a complicated process involving an inhibition of activity by cleavage of the alpha subunit, activation by cleavage of gamma, and inhibition with cleavage of the beta subunit. mAbs to the gamma subunit, gamma II and gamma III, activated ECF1 by 4.4- and 2.4-fold, respectively, by changing the affinity of the enzyme for the epsilon subunit, as evidenced by density gradient centrifugation experiments. The gamma-subunit mAbs did not alter the ATPase activity of ECF1*- or trypsin-treated enzyme. The alpha-subunit mAb (alpha I) activated ECF1 by a factor of 2.5-fold and ECF1F0 by 1.3-fold, but inhibited the ATPase activity of ECF1* by 30%.  相似文献   

9.
In leaves and intact chloroplasts, oxidation and reduction have been shown previously to regulate the ATPase activity of thylakoids. Illumination of spinach chloroplast thylakoids in the presence of dithiothreitol, which activates the ability of thylakoids to catalyze sustained ATP hydrolysis in the dark, causes increased incorporation of N-ethylmaleimide into the gamma subunit of coupling factor 1 (CF1). A disulfide bond in the gamma subunit is reduced during activation. The residues involved in this disulfide bond are the same as those in the disulfide linkage reduced during dithiothreitol activation of soluble CF1. The disulfide and dithiol forms of the gamma subunit may be separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. N-Ethylmaleimide is preferentially incorporated in the dark into the reduced form of the gamma subunit of CF1 in thylakoids previously exposed to dithiothreitol. Only a subpopulation of the CF1 in thylakoids is susceptible to dithiothreitol reduction and subsequent reaction with N-ethylmaleimide in the dark. Alkylation of the thiol groups exposed by reduction of the disulfide bond protects ATPase activity from inhibition by oxidants. At a given value of the transmembrane pH differential, photophosphorylation rates in dithiothreitol-activated thylakoids can be as much as seven to eight times those of nonactivated controls. N-Ethylmaleimide treatment of activated thylakoids in the dark prevents the loss of the stimulation of ATP synthesis on storage of the thylakoids. Photophosphorylation by intact chloroplasts lysed in assay mixtures is also activated in comparison to that by washed thylakoids. At a low ADP concentration, the rate of photophosphorylation approaches saturation as delta pH increases. These results suggest that the gamma subunit of CF1 plays an important role in regulation of ATP synthesis and hydrolysis.  相似文献   

10.
An improved procedure for the preparation of chloroplast coupling factor 1 (CF1) lacking the delta subunit is described. In addition, CF1 deficient in the epsilon subunit was isolated by a new method and CF1 lacking both of the smaller subunits was prepared. The ability of the subunit-deficient forms and of CF1, either heated or incubated with dithiothreitol to activate its ATPase activity, to bind to thylakoids from which CF1 had been removed was studied. All CF1 preparations bound in a cation-dependent manner to similar extents. CF1 lacking the delta subunit required higher cation concentrations for maximal binding. All preparations competed similarly with control CF1 for binding sites on the depleted membranes. The alpha subunit of all forms of CF1 in solution was rapidly cleaved by trypsin. After reconstitution, however, the alpha subunit of CF1, as well as of the subunit-deficient and the activated forms, was resistant to attack by trypsin. Moreover, treatment of the membranes with either trypsin or N,N'-dicyclohexylcarbodiimide inhibited the binding of all CF1 forms. These results suggest that the binding of the subunit-deficient and activated forms of CF1 is specific. CF1 lacking the epsilon subunit restored neither proton uptake nor ATP synthesis to the depleted membranes. In contrast to our previous results, CF1 lacking the delta subunit was partially effective. Previously, we used a suboptimal Mg2+ concentration for binding the delta-deficient enzyme which we show here was partially deficient in the epsilon subunit. These results show that the delta and epsilon subunits are not required for binding CF1 to the membranes and that the delta subunit is not an absolute requirement for ATP synthesis.  相似文献   

11.
Shi XB  Wei JM  Shen YK 《Biochemistry》2001,40(36):10825-10831
Ten truncated mutants of chloroplast ATP synthase epsilon subunit from spinach (Spinacia oleracea), which had sequentially lost 1-5 amino acid residues from the N-terminus and 6-10 residues from the C-terminus, were generated by PCR. These mutants were overexpressed in Escherichia coli, reconstituted with soluble and membrane-bound CF(1), and the ATPase activity and proton conductance of thylakoid membrane were examined. Deletions of as few as 3 amino acid residues from the N-terminus or 6 residues from the C-terminus of epsilon subunit significantly affected their ATPase-inhibitory activity in solution. Deletion of 5 residues from the N-terminus abolished its abilities to inhibit ATPase activity and to restore proton impermeability. Considering the consequence of interaction of epsilon and gamma subunit in the enzyme functions, the special interactions between the epsilon variants and the gamma subunit were detected in the yeast two-hybrid system and in vitro binding assay. In addition, the structures of these mutants were modeled through the SWISS-MODEL Protein Modeling Server. These results suggested that in chloroplast ATP synthase, both the N-terminus and C-terminus of the epsilon subunit show importance in regulation of the ATPase activity. Furthermore, the N-terminus of the epsilon subunit is more important for its interaction with gamma and some CF(o) subunits, and crucial for the blocking of proton leakage. Compared with the epsilon subunit from E. coli [Jounouchi, M., Takeyama, M., Noumi, T., Moriyama, Y., Maeda, M., and Futai, M. (1992) Arch. Biochem. Biophys. 292, 87-94; Kuki, M., Noumi, T., Maeda, M., Amemura, A., and Futai, M. (1988) J. Biol. Chem. 263, 4335-4340], the chloroplast epsilon subunit is more sensitive to N-terminal or C-terminal truncations.  相似文献   

12.
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.  相似文献   

13.
A hybrid ATPase composed of cloned chloroplast ATP synthase beta and gamma subunits (betaC and gammaC) and the cloned alpha subunit from the Rhodospirillum rubrum ATP synthase (alphaR) was assembled using solubilized inclusion bodies and a simple single-step folding procedure. The catalytic properties of the assembled alpha3Rbeta3CgammaC were compared to those of the core alpha3Cbeta3CgammaC complex of the native chloroplast coupling factor 1 (CF1) and to another recently described hybrid enzyme containing R. rubrum alpha and beta subunits and the CF1 gamma subunit (alpha3Rbeta3RgammaC). All three enzymes were similarly stimulated by dithiothreitol and inhibited by copper chloride in response to reduction and oxidation, respectively, of the disulfide bond in the chloroplast gamma subunit. In addition, all three enzymes exhibited the same concentration dependence for inhibition by the CF1 epsilon subunit. Thus the CF1 gamma subunit conferred full redox regulation and normal epsilon binding to the two hybrid enzymes. Only the native CF1 alpha3Cbeta3CgammaC complex was inhibited by tentoxin, confirming the requirement for both CF1 alpha and beta subunits for tentoxin inhibition. However, the alpha3Rbeta3CgammaC complex, like the alpha3Cbeta3CgammaC complex, was stimulated by tentoxin at concentrations in excess of 10 microm. In addition, replacement of the aspartate at position 83 in betaC with leucine resulted in the loss of stimulation in the alpha3Rbeta3CgammaC hybrid. The results indicate that both inhibition and stimulation by tentoxin require a similar structural contribution from the beta subunit, but differ in their requirements for alpha subunit structure.  相似文献   

14.
The properties of two monoclonal antibodies which recognize the epsilon subunit of Escherichia coli F1-ATPase were studied in detail. The epsilon subunit is a tightly bound but dissociable inhibitor of the ATPase activity of soluble F1-ATPase. Antibody epsilon-1 binds free epsilon with a dissociation constant of 2.4 nM but cannot bind epsilon when it is associated with F1-ATPase. Likewise epsilon cannot associate with F1-ATPase in the presence of high concentrations of epsilon-1. Thus epsilon-1 activates F1-ATPase which contains the epsilon subunit, and prevents added epsilon from inhibiting the enzyme. Epsilon-1 cannot bind to membrane-bound F1-ATPase. The epsilon-4 antibody binds free epsilon with a dissociation constant of 26 nM. Epsilon-4 can bind to the F1-ATPase complex, but, like epsilon-1, it reverses the inhibition of F1-ATPase by the epsilon subunit. The epsilon subunit remains crosslinkable to both the beta and gamma subunits in the presence of epsilon-4, indicating that it is not grossly displaced from its normal position by the antibody. Presumably the activation arises from more subtle conformational effects. Antibodies epsilon-4 and delta-2, which recognizes the delta subunit, both bind to F1F0 in E. coli membrane vesicles, indicating that these subunits are substantially exposed in the membrane-bound complex. Epsilon-4 inhibits the ATPase activity of the membrane-bound enzyme by about 50%, and Fab prepared from epsilon-4 inhibits by about 40%. This inhibition is not associated with any substantial change in the major apparent Km for ATP. These results suggest that inhibition of membrane-bound F1-ATPase arises from steric effects of the antibody.  相似文献   

15.
The structure of thylakoid membrane-bound chloroplast coupling factor CF1 was studied by limited proteolysis followed by sodium dodecylsulfate polyacrylamide gel electrophoresis and N-terminal sequence analysis. The N-terminal fragment of the alpha-subunit was shown to have an exposed area including the peptide bond R21-E22. The cleavage of this peptide bond caused the alphaK24-V25 bond to be exposed to the outside. In the N-terminal fragment of the beta-subunit, the L14-E15 bond was identified and found to be subject to trypsinolysis. Also, the alphaR140-S141, alphaG160-R161, and betaG102-G103 bonds were accessible to the proteolytic attack. In general, the beta-subunit of membrane-bound CF1 is more sensitive to proteolysis than that of solubilized CF1. The products of proteolysis of the alpha-subunit did not contain the polypeptides typical of the reaction of cleavage of the alphaE17-G18 and alphaE22-V23 bonds in isolated CF1. These results suggest a significant structural difference between soluble and membrane-bound CF1. A number of peptide bonds, alphaG160-R161 in particular, were shown to be shielded from proteolytic attack by papain in illuminated thylakoid membranes, probably as a result of membrane energization. In contrast, the light-induced reduction of the gamma-subunit caused an increase in the accessibility of some peptide bonds to this protease, including the alphaG160-R161 bond.  相似文献   

16.
The membrane fusion protein of murine leukemia virus is a trimer of a disulfide-linked peripheral-transmembrane (SU-TM) subunit complex. The intersubunit disulfide bond is in SU linked to a disulfide bond isomerization motif, CXXC, with which the virus controls its fusion reaction (M. Wallin, M. Ekstr?m, and H. Garoff, EMBO J. 23:54-65, 2004). Upon receptor binding the isomerase rearranges the intersubunit disulfide bond into a disulfide bond isomer within the motif. This facilitates SU dissociation and fusion activation in the TM subunit. In the present study we have asked whether furin cleavage of the Env precursor potentiates the isomerase to be triggered. To this end we accumulated the late form of the precursor, gp90, in the cell by incubation in the presence of a furin-inhibiting peptide. The isomerization was done by NP-40 incubation or by a heat pulse under alkylation-free conditions. The cells were lysed in the presence of alkylator, and the precursor was immunoprecipitated, gel isolated, deglycosylated, and subjected to complete trypsin digestion. Disulfide-linked peptide complexes were separated by sodium dodecyl sulfate-tricine-polyacrylamide gel electrophoresis under nonreducing conditions. This assay revealed the size of the characteristic major disulfide-linked peptide complex that differentiates the two isomers of the disulfide bond between Cys336 (or Cys339) and Cys563, i.e., the bond corresponding to the intersubunit disulfide bond. The analyses showed that the isomerase was five- to eightfold more resistant to triggering in the precursor than in the mature, cleaved form. This suggests that the isomerase becomes potentiated for triggering by a structural change in Env that is induced by furin cleavage in the cell.  相似文献   

17.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We investigated the ability of subunits beta, gamma, delta, and epsilon of CF1, the F1-ATPase of chloroplasts, to interact with exposed CF0 in EDTA-treated, partially CF1-depleted thylakoid membranes. We measured the ability of subunits beta, gamma, delta, and epsilon to stimulate the rate of photophosphorylation under continuous light and, for subunit beta, also the ability to diminish the proton leakage through exposed CF0 by deceleration of the decay of electrochromic absorption transients under flashing light. The greatest effect was caused by subunit beta, followed by gamma/delta/epsilon. Pairwise combinations of gamma, delta, and epsilon or each of these subunits alone were only marginally effective. Subunit gamma from the thermophilic bacterium PS 3 in combination with chloroplast delta and epsilon was as effective as chloroplast gamma. The finding that the small CF1 subunits in concert and the beta subunit by itself specifically interacted with the exposed proton channel CF0, qualifies the previous concept of subunit delta acting particularly as a plug to the open CF0 channel. The interactions between the channel and the catalytic portion of the enzyme seem to involve most of the small, and at least beta of the large subunits.  相似文献   

19.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Nowak KF  McCarty RE 《Biochemistry》2004,43(11):3273-3279
The ATP synthases from chloroplasts and Escherichia coli are regulated by several factors, one of which is the epsilon subunit. This small subunit is also required for ATP synthesis. Thylakoid membranes reconstituted with CF1 lacking the epsilon subunit (CF1-epsilon) exhibit no ATP synthesis and very high ATP hydrolysis. Either native or recombinant epsilon restores ATP synthesis and inhibits ATP hydrolysis. Previously, we showed that truncated epsilon, lacking the last 45 C-terminal amino acids, restored ATP synthesis to membranes reconstituted with CF1-epsilon but was not an efficient inhibitor of ATP hydrolysis. In this paper, we show that this truncated epsilon is unable to inhibit ATP hydrolysis when Mg(2+) is the divalent cation present, both for the enzyme in solution and on the thylakoid membrane. In addition, the rate of reduction of the disulfide bond of the gamma subunit by dithiothreitol is not decreased by truncated epsilon, although full-length epsilon greatly impedes reduction. Thylakoid membranes can synthesize ATP at the expense of proton gradients generated by pH transitions in the dark. Our reconstituted membranes are able to produce a limited amount of ATP under these "acid-bath" conditions, with approximately equal amounts produced by the membranes containing wild-type epsilon and those containing truncated epsilon. However, the membranes containing truncated epsilon exhibit much higher background ATP hydrolysis under the same acid-bath conditions, leading to the conclusion that, without the C-terminus of epsilon, the CF1CFo is unable to check unwanted ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号