首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
Gap characteristics and regeneration in gaps were studied in some primary evergreen broad-leaved forests of the warm temperate zone in western Japan. Total observed 161 gaps covered 15.7% of the total land area of 8.23 ha. Gap density was 19. 6 gaps ha−1 and mean gap size was 80.3 m2. Smaller gaps (<80 m2) were much more frequent than larger ones, and gaps larger than 400 m2 were rare. Gaps created by the death or the injury of single trees were 79.5%. Canopy trees died most often with broken trunks and not so often by uprooting or leaving standing-dead. Different types of gap regeneration behaviour were recognized among the major canopy tree species, though gap regeneration of the common evergreen broad-leaved tree species did not clearly depend on a species-specific gap size.Distylium racemosum, which occurred in equal importance (about 25%) in the canopy layer of each study stand, regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Therefore, it can be considered a typical climax species in this forest type of western Japan.Persea thunbergii, which can reproduce vegetatively, showed a similar type of gap regeneration behaviour.Castanopsis cuspidata can replace itself with relatively higher frequency by means of vegetative reproduction (stump sprouting) after gap creation.Quercus acuta andQuercus salicina did not regenerate under the current gap-disturbance regime. Though the frequency of uprooting is low, soil disturbance by uprooting seems to be important for the perpetuation of the pioneer tree species,Fagara ailanthoides, which recruits from buried seeds in the soil  相似文献   

2.
Gap characteristics and gap regeneration were studied in three old-growth stands of subalpine coniferous forests in the northern Yatsugatake and the northern Akaishi mountains, central Japan. With the results of the present study and those of a previous study conducted in another locality, general features of gap characteristics and gap regeneration behavior of major tree species in subalpine coniferous forests of central Japan were summarized and discussed. Of the total 237 gaps investigated in the 14.48 ha of forested area, the percentage gap area to surveyed area, gap density and mean gap size were 7.3%, 17.2 ha−1, and 43.3 m2, respectively. The gap size distributions were similar among stands and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and those >200 m2 were rare. Gaps due to the death of multiple canopy trees comprised 44.7% of the total ones. Canopy trees died in various states; standing dead (42.6%) or trunk broken (43.7%) were common and uprooted (12.2%) was an uncommon type of death of canopy trees. These figures indicate that general features of gap characteristics in this forest type are the low proportion of gap area and the high proportions of small gap size and multiple-tree gap formation. In general, shade-tolerantAbies frequently, andTsuga, infrequently, regenerate in gaps from advance regenerations recruited before gap formation, whilePicea and shade-intolerantBetula possibly regenerate in gaps from new individuals recruited after gap formation. Gap successors of conifers occurred in a wide range of gap size and did not show the clear preference to species specific gap size. In old-growth stands without large-scale disturbance (≥0.1 ha in area) of subalpine coniferous forests of central Japan, major tree species may coexist with their different gap-regeneration behaviors and, probably, different life history traits.  相似文献   

3.
Gap characteristics and gap regeneration were studied in three mature stands belonging to different community types in a subalpine coniferous forest on Mt Ontake, central Honshu, Japan. Gap disturbance regimes were remarkably similar among stands studied; percentage gap area to surveyed area, gap density and mean gap size were 7.3–8.5%, 17.8–20.0 ha−1 and 40.8–42.5 m2, respectively. The gap size class distributions were also similar and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and gaps >200m2 were rare. Forty-five to 66% of gaps were due to the death of single canopy trees. Canopy trees more often died leaving standing dead wood (40–5.7%) or broken trunks (43–49%). Shade tolerantAbies mariesii andAbies veitchii, frequently, andTsuga diversifolia, less frequently, regenerated in gaps, from advance regenerations recruited before gap formation.Picea jezoensis var.hondoensis may regenerate in gaps, from new individuals recruited after gap formation. The breakage of denseSasa coverage and the mineral soils exposed by the uprooted plants that form gaps might provide regeneration opportunities for shade intolerantBetula. Of the important species limited to the ridge site,Chamaecyparis obtusa, frequently, andThuja standishii, infrequently, regenerated from plants alreadyin situ. Regeneration ofPinus parviflora was not seen. Based on the gap characteristics and gap regeneration behaviour of each species described, stand dynamics in each stand are discussed.  相似文献   

4.
S. Yamamoto 《Plant Ecology》1996,127(2):203-213
Gap regeneration of major tree species was examined, based on the pattern of gap phase replacement, in primary old-growth stands of warm-temperate, cool-temperate and subalpine forests, Japan. Using principal component analysis, the gap-regeneration behavior of major tree species could be divided into three guilds and that of Fagus crenata (monodominant species of cool-temperate forests). The criteria used for this division were total abundance of canopy trees and regenerations and relative abundance of regenerations to canopy trees. The gap-regeneration behavior of species in the first guild was that canopy trees regenerate in gaps from seedlings or saplings recruited before gap formation; they had higher total abundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of F. crenata was same as species in the first guild, but F. crenata had less abundant regenerations relative to its canopy trees. Species in the second guild had lower total abundance and less abundant regenerations to their canopy trees. The guild contained species whose canopy trees regenerate in gaps from seedlings or saplings recruited after gap formation or regenerate following largescale disturbance. The third guild consisted of species with lower total aboundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of some species in this guild was that trees regenerate in gaps from seedlings or saplings recruited before gap formation, and grow, mature, and die without reaching the canopy layer, while the gap-regeneration behavior of other species was same as that of species in the first guild or F. crenata. Major tree species of subalpine forests were not present in the third guild.  相似文献   

5.
The spatial distribution pattern of trees and the association between canopy and understory individuals were examined with reference to the distribution of tree crowns in a cool temperate, mixed forest in Ohdaigahara, western Japan. Line transect and contact sampling methods were used to examine the pattern over various spatial scales. These methods are useful to detect patterns over a large study area. The dominance ofChamaecyparis obtusa on steep slopes forming large patches suggested that the distribution of this species is a consequence of landslides. UnderstoryFagus crenata showed a clumped distribution, and the relative coverage of this species was larger in canopy gaps than under a closed canopy. Understory individuals ofAbies homolepis showed a positive association with canopy trees ofF. crenata but a negative association with conspecific canopy individuals. These patterns suggested thatF. crenata regenerates in canopy gaps and is replaced byA. homolepis. The dynamics of these two species are consistent with the process of gap dynamics. The effects of both small- and large-scale disturbance must be evaluated to understand the mechanisms of patch formation and the coexistence of forest tree species.  相似文献   

6.
The population structure and regeneration of canopy species were studied in a 4 ha plot in an old-growth evergreen broad-leaved forest in the Aya district of southwestern Japan. The 200 m × 200 m plot contained 50 tree species, including 22 canopy species, 3,904 trees (dbh5 cm) and a total basal area of 48.3 m2/ha. Forty one gaps occurred within the plot, and both the average gap size (67.3 m2) and the total area of gap to plot area (6.9%) were small. Species found in the canopy in the plot were divided into three groups (A, B, C) based on size and spatial distribution patterns, and density in each tree size. Group A (typical species: Distylium racemosum, Persea japonica) showed a high density, nearly random distribution and an inverse J-shaped size distribution. Species in group B (Quercus salicina, Quercus acuta, Quercus gilva) were distributed contagiously with conspicuous concentration of small trees (<5 cm dbh) around gaps. However, the species in this group included few trees likely to reach the canopy in the near future. Group C included fast-growing pioneer and shade intolerant species (e.g. Cornus controversa, Carpinus tschonoskii, Fagara ailanthoides), which formed large clumps. Most gaps were not characterized by successful regeneration of group B and C but did appear to accelerate the growth of group A. Group B species appear to require long-lived or large gaps while group C species require large, catastrophic disturbances, such as landslides, for regeneration.  相似文献   

7.
Abstract. We conducted a study in the laurel forest of Tenerife (Canary Islands, Spain) to describe the characteristics of natural gaps and to assess the role of treefall gaps in forest dynamics. Very little is left of the natural laurel forest with i.a. Laurus azorica, Ilex canariensis and Prunus lusitanica. We looked for treefall gaps in 80 randomly located 2500 m2 plots. These plots represented ca. 1% of the remaining and protected laurel forest of Tenerife. We recorded the characteristics of the species causing the gaps, gap architecture and gap age in all observed gaps larger than 10 m2. We inventoried the regeneration in each gap and in a neighbouring control plot with the same topography. Large gaps (>75 m2) were not common in the laurel forest. The absence of large gaps could be due to the physiognomy of the vegetation, the mild weather or the rarity of disturbances. Instead of forming gaps, many trees decompose in place and branches from neighbouring trees and suckers from the decomposed trees occupy the free space. Also, the high rate of asexual regeneration could contribute to the fast closing of the gap. The number of gaps created by Prunus lusitanica was higher than expected (based on canopy composition) while Ilex canariensis and Laurus azorica created fewer gaps. In this evergreen forest, differences between gap and non-gap conditions are not as distinct as in other forest types. Only 0.4% of the canopy is in the gap phase (0.6% including gaps smaller than 10m2). No differences were found in patterns of regeneration between gap and non-gap phases in the forest. Gaps do not explain the persistence of pioneer species in the laurel forest.  相似文献   

8.
We asked the following questions regarding gap dynamics and regeneration strategies in Juniperus-Laurus forests: How important are gaps for the maintenance of tree diversity? What are the regeneration strategies of the tree species? Thirty canopy openings were randomly selected in the forest and in each the expanded gap area was delimited. Inside expanded gaps the distinction was made between gap and transition zone. In the 30 expanded gaps a plot, enclosing the gap and transition zone, was placed. In order to evaluate the differences in regeneration and size structure of tree species between forest and expanded gaps, 30 control plots were also delimited in the forest, near each expanded gap. In the 60 plots the number of seedlings, saplings, basal sprouts and adults of tree species were registered. Canopy height and width of adult individuals were also measured. The areas of the 30 gaps and expanded gaps were measured and the gap-maker identified. Juniperus-Laurus forests have a gap dynamic associated with small scale disturbances that cause the death, on average, of two trees, mainly of Juniperus brevifolia. Gap and expanded gap average dimensions are 8 and 25 m2, respectively. Gaps are of major importance for the maintenance of tree diversity since they are fundamental for the regeneration of all species, with the exception of Ilex azorica. Three types of regeneration behaviour and five regeneration strategies were identified: (1) Juniperus brevifolia and Erica azorica are pioneer species that regenerate in gaps from seedlings recruited after gap formation. However, Juniperus brevifolia is a pioneer persistent species capable of maintaining it self in the forest due to a high longevity and biomass; (2) Laurus azorica and Frangula azorica are primary species that regenerate in gaps from seedlings or saplings recruited before gap formation but Laurus azorica is able to maintain it self in the forest through asexual regeneration thus being considered a primary persistent species; (3) Ilex azorica is a mature species that regenerates in the forest.  相似文献   

9.
To detect the factors that affect sapling species composition in gaps, we investigated 55 gaps in an old-growth temperate deciduous forest in Ogawa Forest Reserve, central Japan. Gap size, gap age, gap maker species, topographic location, adult tree composition around gaps, and saplings of tree species growing in the gaps were censused. For gaps 5 m2, mean gap size was 70 m2 and the maximum was 330 m2. Estimated ages of gaps had a tendency to be concentrated in particular periods relating to strong wind records in the past. The sapling composition in gaps was highly and significantly correlated to that under closed canopy, indicating the importance of advance regeneration in this forest. However, some species showed significant occurrence biases in gaps or under closed canopy, suggesting differences in shade tolerance. The result of MANOVA showed that gap size and topography were important factors in determining the sapling composition in gaps. Species of gap makers affected the sapling composition indirectly by influencing gap size. The existence of parent trees around gaps had effects on sapling densities of several species. Gap age did not have clear influences on sapling composition. Variations in gap size and topography were considered as important factors that contribute to maintenance of species diversity in this forest.  相似文献   

10.
The ecological significance of architectural patterns for saplings ofFagus crenata andFagus japonica co-occurring in a secondary oak forest were evaluated by comparing the size and shape of leaves, trunks and crowns.Fagus japonica saplings were different fromF. crenata saplings in some architectural properties: (i) the leaf area and specific leaf area were larger; (ii) the ratio of sapling height to trunk length was lower, indicating greater leaning of the trunk; and (iii) the projection area of the crown was larger and the leaf area index lower indicating less mutual shading of leaves. These architectural features indicated thatF. japonica saplings were more shade tolerant thanF. crenata andF. crenata saplings were superior toF. japonica for growth in height and could, therefore, utilize sunlight in the upper layer. An erect trunk inF. crenata and a leaning trunk inF. japonica may be important characteristics associated with the regenerations patterns of each species; regeneration from seedlings under canopy gaps in the former and vegetative regeneration by sprouting in the latter.  相似文献   

11.
The disturbance regime of an old-growth forest in coastal California   总被引:1,自引:0,他引:1  
This study deals with the disturbance regime of an old-growth, mixed-evergreen forest with a canopy composed of Arbutus menziesii, Lithocarpus densiflora, Pseudotsuga menziesii, Quercus chrysolepis, Q. wislizenii, and Sequoia sempervirens. 80 canopy gaps were randomly selected from throughout a 230-ha watershed. Of the land area sampled, 11.1 to 16.6 % was within gaps. Gap area had a mode of < 50m2 and a range of 6–3437 m2. Gaps were formed by snags, snaps, tips, and slope failures. Although < 10 % of the gaps sampled were due to slope failures, these accounted for 43 % of the total land area within gaps. All snags resulted from the death of a Pseudotsuga or Arbutus individual, the widely branched trunks of Arbutus individuals accounted for most of the irregularly shaped gaps, and larger gaps resulted from the death of Pseudotsuga and Sequoia individuals, averaging 119 and 111 m2 respectively, than from the death of Lithocarpus or Arbutus, averaging 54 and 52 m2. Gaps were more frequent over concave sections of slopes and large gaps were more frequent on north-facing slopes. The creation of a gap increased disturbance to the adjacent canopy, with half of the gaps formed through more than one disturbance. The relationship of disturbance regime to topography, the influence of canopy species biology on gap properties, and the repeated events involved in gap formation all indicate a fine scale variation in the pattern of gaps and their characteristics.  相似文献   

12.
24 treefall gaps accumulated over a 10 year period along an altitudinal transectcovering 4.6ha on Mt. Hauhungatahi, Tongariro National Park, New Zealand were described quantitatively in terms of the area of damage (‘expanded gap’), the canopy opening (‘Tight-gap’) and the size of the root mound. Tree mortality and branch loss following cyclone Bola, 1988, were recorded. In each gap saplings were ranked by species according to their vigour. Pre-gap and post-gap vertical and horizontal branch growth rates were calculated. Effects in the subalpine forest (> 1050 m) were compared with those in the montane zone. Tree mortality was highly episodic, associated with major storms, and patchy. Falling canopy trees destroyed, on average, 1.3 additional trees (> 10 cm diameter at 1 m). About half the trees were uprooted and the remainder broken off. Uprooted angiosperm (canopy) trees frequently resprouted from their bases, gymnosperms rarely. Expanded gap area averaged 56 m2 in the sub-alpine forest and 88 m2 in the montane zone. Median expanded gap areas were about twice those of light gaps. Gap size frequency distribution was highly skewed. The largest gap was formed by a single Dacrydium cupressinum which destroyed six other trees creating a gap of ca. 0.03 ha. Expanded gaps, light gaps, and root mounds comprised 4.5, 2.8 and 0.1 % of the forest area in the sub-alpine zone, and 3.8, 2.5 and 0.06 % in the montane forest. These values represent 10 years of accumulation, and imply light gap ‘return times’ of 360 years for the sub-alpine and 400 years for the montane forest. These periods are in agreement with the known longevities of the canopy and emergent trees. Vertical shoot growth rate was about twice that in the horizontal plane, and both increased following gap formation. The relative increase was greatest in the subalpine forest. Using the measured growth rates it is estimated that gaps of median dimensions are filled by lateral extension growth in 31–44 yr. Saplings require longer to reach the mean canopy height and consequently require large (multiple tree) gaps or sequential gap events.  相似文献   

13.
Topo-community structure and dynamics were studied in mixed cool temperate forests, using the regeneration dynamics, to clarify the maintenance mechanisms of community patterns along a microtopographic gradient. The 76 stands studied were classified into two groups (i.e. convex slope and concave slope stands). The soil surface was more eroded on the concave slope than on the convex slope, while water potential was not significantly different between topographies. On the convex slope, even-aged patches alternated between young phase patches dominated by shade intolerant species, such asAcer rufinerve andBetula grossa, and mature phase patches, withTsuga sieboldii andFagus crenata. A slower lateral growth rate ofTsuga canopy trees and the absence of suppressed saplings in the mature phase may prolong the gap phase, which provides a favorable situation to shade-intolerant species. On the concave slope, patch structure was less clear, and process of replacement of canopy species by previously suppressed individuals of the same species was seen in the mature phase, which was mainly composed ofF. crenata, Fagus japonica, Acer sieboldianum andStewartia pseudo-camellia. Gaps on the concave slope were formed frequently but were generally closed within 10 years by lateral growth of deciduous canopy trees and by upgrowth of suppressed trees, and thus some individuals underwent recurrent periods of suppression until they reached the canopy. We concluded that soil surface stability and gap encroachment pattern are critical to the maintenance of the community pattern along a microtopographic gradient.  相似文献   

14.
Invasive plant species are major drivers of biodiversity losses, especially on islands which are prone to invasions and extinctions. In the “endemic montane forest” of Robinson Crusoe Island (Pacific Ocean, Chile) invasive exotic plant species threaten conservation efforts by establishing in gaps and outcompeting native tree species regeneration. We compared gap attributes and ground vegetation cover in three gap types: those dominated by native species (<5 % cover of invasive species), invaded gaps (>30 % cover by invasive species), and treated gaps (invasive species removed). We examined (a) which gap attributes favored native and exotic species, (b) the relationship between gap size and species richness, and (c) species responses to invasion and treatment. Gaps ranged in size from 46 to 777 m2 caused mainly by uprooted and snapped trees. Multi response permutation procedures showed a different floristic composition between natural, invaded and treated gaps. The presence of Myrceugenia fernandeziana (native species) and Aristotelia chilensis (invasive species) as gap border trees was positively and negatively correlated with native species richness, respectively. New gaps had more native species than old gaps, and smaller gaps contained relatively more native species than larger ones. An increase in invasive species cover was related to a decline in native species cover and richness. 1–6 years after treatment gaps tended to recover their native floristic composition. Highly effective conservation management programs will concentrate on monitoring gap creation, early control of invasive species, and by treating smaller gaps first.  相似文献   

15.
This paper reviews the differences in the distribution and regeneration ofFagus crenata between two types of Japanese beech forests, the Japan Sea (JS)-type and the Pacific Ocean (PO)-type, and discusses the causal factors and characteristics of these forests, particularly the PO-type.F. crenata in PO-type forests regenerates sporadically rather than constantly, whereas regeneration in the JS-type forests is relatively constant with gap dynamics.F. crenata has dominated in snowy areas both in the past, after the last glacial age, when there was less human disturbance, and in the present. Snow accumulation facilitates beech regeneration in snowy JS-type forests, but not in the less snowy PO-type. Snow protects beechnuts from damage caused by rodents, desiccation, and freezing. In addition, snow suppresses dwarf bamboo in the spring, thus increasing the amount of sunlight available for beech seedlings on the forest floor. Snow also supplies melt water during the growing season and limits the distribution of herbivores. Moreover, snow reduces the number of forest fires during the dry winter and early spring seasons. The low densities ofF. crenata impede its regeneration, because disturbed wind pollination lowers seed fertility and predators are less effectively satiated. In snowy JS-type beech forests,F. crenata dominates both at the adult and the juvenile stages because it regenerates well, while other species are eliminated by heavy snow pressure. On the less snowy PO-side, deciduous broad-leaved forests with various species are a primary feature, althoughF. crenata dominates because of its large size and long lifespan.  相似文献   

16.
Abstract. We investigated gap formation and gap replacement in the Knysna Forest. Most (70 %) trees died standing, most gaps were small (median gap size of 35 m2; Gap diameter/Canopy height ratio of 0.24) and were formed by a single dead individual. No large differences were found among the more common species in terms of the size of gaps they created when they died or in the size of gaps they colonised. This is probably because the more common species are shade tolerant and they established before the gaps were formed. Regenerating individuals were almost never found on root mounds in pits or on logs. There were no indications of specific replacement patterns. In contrast, random replacement appears to be the dominant pattern for the more common species. Overall successional patterns suggest that the forest is relatively stable. We conclude that the gaps/non-gaps paradigm is not as useful as a lottery paradigm for explaining gap dynamics in the Knysna Forest.  相似文献   

17.
Question: Is light available for subcanopy individuals of Fagus crenata spatiotemporally heterogeneous across patches with closed canopies of different foliage phenologies and gaps? Is local abundance of Sasa influenced by the composition of the canopy layer? If so, does the Sasa layer also affect the amount of light available to small F. crenata saplings? Is variation in F. crenata population structure consistent with the hypothesis that light is important? Location: Mt. Kurikoma, Japan 780 m a.s.l. Methods: Population structure of subcanopy individuals of Fagus crenata and importance of Sasa were examined in five patch types. The patch‐types were Fc (F. crenata only in the crown), Qm (Quercus mongolica var. grosseserrata only in the crown), Mo (Magnolia obovata only in the crown), Fc’ (periphery of F. crenata) and Gap. Seasonal changes in light availability above and below the Sasa layer was examined by using hemispherical photographs and quantum sensors. Results: Subcanopy individuals of F. crenata began unfolding their leaves approximately one month earlier than canopy trees of Q. mongolica var. grosseserrata and M. obovata, but a few days later than those of adult F. crenata. Accumulated photosynthetic photon flux density above the Sasa layer was greatest in Qm and Mo, and lowest in Fc. Importance of Sasa was highest in Gap. Maximum height and the number of subcanopy individuals of F. crenata were greatest in Qm, followed by Mo, and lowest in Fc. Conclusions: Differences in canopy layer composition probably influence the regeneration of F. crenata both directly through their foliage phenologies, and also indirectly by determining the importance of Sasa.  相似文献   

18.
ABSTRACT

The canopy disturbance, the gap environment, gap regeneration and maintenance of tree species diversity in the lower subtropical evergreen broad-leaved forest (LSEBF) of South China were studied in this paper. The most common manner of gap formation in the forest was by stem breakage. Most gaps were formed by two gap makers. The sizes of most expanded gaps (EG) and canopy gaps (CG) were in the range of 100 – 300 m2 and 50 – 100 m2, respectively. The ecological factors in gaps were analysed on the basis of contrasting measurement of the microclimatic regimes in gaps of different sizes and in non-gap stands. Tree species in the LSEBF were classified into 5 ecological species groups on the bases of their changes in order of importance values in gaps and in non-gap stands. Most of the species reached their peak of regeneration density around the gap sizes of 100 m2 and 500 m2. The curves of regeneration density vs. gap age for major species revealed two types. Regeneration densities of most species, and species diversity indices in gaps were greater than those in non-gap stands.  相似文献   

19.
We used a controlled experiment to investigate how disturbance scale (canopy gap area) and herbivory influence post-disturbance plant community dynamics. Twenty canopy gaps were installed in a temperate hemlock-hardwood forest during the winter of 2002–2003: seven small gaps (50–150 m2), seven medium gaps (151–250 m2), and six large gaps (251–450 m2). Within each gap, we established 4–12 sample plots (depending on gap size); 1–3 of which were enclosed with wire mesh white-tailed deer (Odocoileus virginianus) exclosures in 2005. Gaps were revisited and intensively sampled in 2007. After five growing seasons, ground-layer plant communities in non-exclosed plots were more similar compositionally than exclosure plots. Non-exclosed plots in small and medium gaps were more similar to non-exclosed plots in large gaps than they were to exclosed plots in their respective gap size class. Shade-tolerant forbs and trees were less common outside exclosures, while generalist species associated with higher understory light levels and exotics were more prevalent outside exclosures. Our results suggest that even in forests with relatively low deer densities (6.5–9.3 deer km−2), white-tailed deer herbivory may influence the developmental trajectory of post-disturbance plant communities and be a mechanism for decreasing β-diversity along environmental gradients.  相似文献   

20.
Stand structure and regeneration in a Kamchatka mixed boreal forest   总被引:1,自引:0,他引:1  
Abstract. A 1‐ha plot was established in a Betula platyphylla‐Picea ajanensis mixed boreal forest in the central Kamchatka peninsula in Russia to investigate stand structure and regeneration. This forest was relatively sparse; total density and stand basal area were 1071/ha and 25.8 m2/ha, respectively, for trees > 2.0 cm in trunk diameter at breast height (DBH). 25% of Betula regenerated by sprouting, and its frequency distribution of DBH had a reverse J‐shaped pattern. In contrast, Picea had a bimodal distribution. The growth rates of both species were high, reaching 20 m in ca. 120 yr. The two species had clumped distributions, especially for saplings. Betula saplings were not distributed in canopy gaps. Small Picea saplings were distributed irrespective of the presence/absence of gaps, while larger saplings aggregated in gaps. At the examined spatial scales (6.25–400 m2) the spatial distribution of Betula saplings was positively correlated with living Betula canopy trees and negatively with dead Picea canopy trees. This suggests that Betula saplings regenerated under the crowns of Betula canopy trees and did not invade the gaps created by Picea canopy trees. The spatial distribution of Picea saplings was negatively correlated with living and dead Betula canopy trees and positively with dead Picea canopy trees. Most small Picea seedlings were distributed under the crowns of Picea trees but not under the crowns of Betula trees or in gaps. This suggests that Picea seedlings establish under the crowns of Picea canopy trees and can grow to large sizes after the death of overhead Picea canopy trees. Evidence of competitive exclusion between the two species was not found. At a 20 m × 20 m scale both skewness and the coefficient of variation of DBH frequency distribution of Picea decreased with an increase in total basal area of Picea while those of Betula were unchanged irrespective of the increase in total basal area of Betula. This indicates that the size structure of Picea is more variable with stand development than that of Betula on a small scale. This study suggests that Betula regenerates continuously by sprouting and Picea regenerates discontinuously after gap formation and that the species do not exclude each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号