首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C-reactive protein (CRP) is not an acute-phase protein in mice, and therefore, mice are widely used to investigate the functions of human CRP. It has been shown that CRP protects mice from pneumococcal infection, and an active complement system is required for full protection. In this study, we assessed the contribution of CRP's ability of activating the classical pathway of complement in the protection of mice from lethal infection with virulent Streptococcus pneumoniae type 3. We used two CRP mutants, Y175A and K114A. The Y175A CRP does not bind C1q and does not activate complement in human serum. The K114A CRP binds C1q and activates complement more efficiently than wild-type CRP. Passively administered, both CRP mutants and the wild-type CRP protected mice from infection equally. Infected mice injected with wild-type or mutant CRP had reduced bacteremia, resulting in lower mortality and increased longevity compared with mice that did not receive CRP. Thus, the protection of mice was independent of CRP-mediated activation of the classical pathway of complement. To confirm that human CRP does not differentiate between human and mouse complement, we analyzed the binding of human CRP to mouse C1q. Surprisingly, CRP did not react with mouse C1q, although both mutant and wild-type CRP activated mouse C3, indicating species specificity of CRP-C1q interaction. We conclude that the mouse is an unfit animal for exploring CRP-mediated activation of the classical complement pathway, and that the characteristic of CRP to activate the classical complement pathway has no role in protecting mice from infection.  相似文献   

2.
The physiological and pathophysiological functions of C-reactive protein (CRP), the classical acute-phase protein, are not well established, despite many reports of biological effects of CRP in vitro and in model systems in vivo. Limited, small scale experiments have suggested that rabbit and human CRP may both protect mice against lethal toxicity of Gram-negative bacterial LPS. However, in substantial well-controlled studies in C57BL/6 mice challenged with Escherichia coli O111:B4 LPS, we show in this work that significant protection against lethality was conferred neither by an autologous acute-phase response to sterile inflammatory stimuli given to wild-type mice 24 h before LPS challenge, nor by human CRP, whether passively administered or expressed transgenically. Male mice transgenic for human CRP, which mount a major acute-phase response of human CRP after LPS injection, were also not protected against the lethality of LPS from either E. coli O55:B5 or Salmonella typhimurium. Even when the acute-phase human CRP response was actively stimulated in transgenic mice before LPS challenge, no protection against LPS toxicity was observed. Indeed, male mice transgenic for human CRP that were pretreated with casein to stimulate an acute-phase response 24 h before LPS challenge suffered significantly greater mortality than unstimulated human CRP transgenic controls. Rather than being protective in this situation, human CRP may thus have pathogenic proinflammatory effects in vivo.  相似文献   

3.
Streptococcus pneumoniae is an important human pathogen and the most common cause of community-acquired pneumonia. Both adaptive and innate immune mechanisms provide protection from infection. Innate immunity to S. pneumoniae in mice is mediated by naturally occurring anti-phosphocholine (PC) Abs and complement. The human acute-phase reactant C-reactive protein (CRP) also protects mice from lethal S. pneumoniae infection. CRP and anti-PC Ab share the ability to bind to PC on the cell wall C-polysaccharide of S. pneumoniae and to activate complement. CRP and IgG anti-PC also bind to Fc gamma R. In this study, Fc gamma R- and complement-deficient mice were used to compare the mechanisms of protection conferred by CRP and anti-PC Ab. Injection of CRP protected wild-type, FcR gamma-chain-, Fc gamma RIIb-, and Fc gamma RIII-deficient mice from infection. Complement was required for the protective effect of CRP as cobra venom factor treatment eliminated the effect of CRP in both gamma-chain-deficient and wild-type mice, and CRP failed to protect C3- or C4-deficient mice from infection. Unexpectedly, gamma-chain-deficient mice were extremely sensitive to pneumococcal infection. This sensitivity was associated with low levels of natural anti-PC Ab. Gamma-chain-deficient mice immunized with nonencapsulated S. pneumoniae produced both IgM- and IgG PC-specific Abs, were protected from infection, and were able to clear the bacteria from the bloodstream. The protection provided by immunization was eliminated by complement depletion. The results show that in this model of systemic infection with highly virulent S. pneumoniae, protection from lethality by CRP and anti-PC Abs requires complement, but not Fc gamma R.  相似文献   

4.
To analyze the regulation of human serum amyloid P component (SAP) gene expression, we have produced seven transgenic mice. The 3.3 kb human SAP genes containing about 0.8 kb of 5' and 1.5 kb of 3' flanking region were injected into fertilized eggs of C57BL/6 mice. In five of the seven transgenic mice, human SAP was detected in the sera and serum concentrations were higher than that of human serum in three lines. The human SAP gene was expressed only in the liver. Amounts of human mRNA in the liver and serum concentrations of human SAP were roughly proportional to the copy number of the integrated gene. Human SAP production lowered the serum levels of mouse endogenous SAP. With the intraperitoneal administration of lipopolysaccharide, the mRNA levels in the liver and serum levels of mouse SAP increased several-fold in both the control and transgenic mice. On the other hand, neither the mRNA nor the serum levels of human SAP increased significantly.  相似文献   

5.
C-reactive protein (CRP) is an acute-phase reactant that is found bound to cells at sites of inflammation. We have passively sensitized HEp-2 cells for CRP binding and examined the effect of this treatment on complement activation and cell lysis. When cells were treated with protamine sulfate and CRP and were incubated with normal human serum in a 4-hr 51Cr-release assay, no significant lysis was noted. In contrast, HEp-2 cells treated with antibody and normal human serum were lysed. The consumption of complement components in normal human serum after incubation with cells treated with protamine and CRP was measured by hemolytic assays. CRP-treated cells consumed over 80% of C1, C4, and C2 and about 40% of C3 present. No significant consumption of C5 through C9 components was observed. Cells treated with antibody and complement showed consumption of C1 through C9. Cells were also sensitized for CRP binding by using diazophenylphosphocholine. This treatment also led to CRP binding and activation of the early classical pathway (C1, C4, C2, and to a lesser extent C3). The components of the membrane attack complex (C5 through C9) were not activated. Both a mouse monoclonal IgM and a human IgG antibody to phosphocholine activated the entire classical pathway. These results indicate that CRP activation of the classical complement pathway is restricted to the early part of the pathway. In the absence of activation of the membrane attack complex, complement-mediated cell lysis cannot occur.  相似文献   

6.
The acute-phase response is an immediate reaction of the host against invading microorganisms. We show here that oligodeoxynucleotides (ODNs) containing a CpG motif rapidly induce the major murine acute-phase proteins in vivo , i.e. serum amyloid A (SAA) and serum amyloid P (SAP). Serum levels of these proteins are elevated within 12 h and peak at 24 h after the injection of CpG-ODN or endotoxin. Liver cells produce the proteins with the same kinetics. Injection of interleukin 6 (IL-6), IL-1β and tumour necrosis factor α (TNF-α) induces SAA and SAP in vivo , but the CpG-ODN-mediated induction does not depend on the presence of the TNF receptor p55, as the acute-phase response in TNF receptor p55-deficient mice does not differ from that of wild-type mice. Aside from CpG-ODN, bacterial genomic DNA also induces the acute-phase response in LPS-resistant C3H/Hej mice. The induction of the major acute-phase proteins SAA and SAP is blocked by the simultaneous injection of CpG-ODN together with d -galactosamine ( d -GalN). As d -GalN sensitizes the host for the toxic effects of TNF-α, a possible mechanism could be the prevention of synthesis of the major acute-phase proteins SAA and SAP.  相似文献   

7.
One component of amyloid, protein AP, has a characteristic pentameric structure and is identical with a 9.5s serum alpha 1-globulin designated serum amyloid P-component or SAP. Another pentameric molecule, the acute-phase reactant C-reactive protein (CRP), shares major amino acid sequence homology with SAP although, in man, SAP is not an acute-phase reactant. Recently, we demonstrated that heat-aggregated CRP (H-CRP), like heat-aggregated IgG, activates platelets to reactions of aggregation, secretion, and generation of thromboxane A2. We report here that physiologic concentrations of SAP inhibit platelet aggregation stimulated by H-CRP. SAP must be present before platelet challenge with H-CRP to be effective. Native (unaggregated) CRP does not inhibit platelet activation induced by H-CRP, and the platelet inhibitory effect of SAP is restricted because platelet responses to each heat-aggregated IgG, acid-soluble collagen, DNA, ADP, and thrombin remain unaltered in the presence of SAP. Thus, human SAP seems to selectively modulate platelet reactivity to modified CRP, and as such to down-regulate at least one aspect of the biologic capacity of its acute-phase homologue.  相似文献   

8.
BackgroundPentraxins (PTXs) are a superfamily of multifunctional conserved proteins involved in acute-phase responses. Recently, we have shown that collectin placenta 1 (CL-P1) and C-reactive protein (CRP) mediated complement activation and failed to form terminal complement complex (TCC) in normal serum conditions because of complement factor H inhibition.MethodsWe used CL-P1 expressing CHO/ldlA7 cells to study the interaction with PTXs. Soluble type CL-P1 was used in an ELISA assay for the binding, C3 and TCC deposition experiments. Furthermore, we used our previously established CL-P1 expressing HEK293 cells for the C3 fragment and TCC deposition assay.ResultsWe demonstrated that CL-P1 also bound serum amyloid p component (SAP) and pentraxin 3 (PTX3) to activate the classical pathway and the alternative pathway using factor B. CRP and PTX3 further amplified complement deposition by properdin. We found that CRP and PTX3 recruit CFH, whereas SAP recruits C4 binding protein on CL-P1 expressing cell surfaces to prevent the formation of TCC in normal serum conditions. In addition, depletion of CFH, C4BP and complement factor I (CFI) failed to prevent TCC formation both in ELISA and cell experiments. Furthermore, soluble complement receptor 1, an inhibitor of all complement pathways prevents PTX induced TCC formation.ConclusionOur current study hypothesizes that the interaction of pentraxins with CL-P1 is involved in complement activation.General significanceCL-P1 might generally inhibit PTX induced complement activation and host damage to protect self-tissues.  相似文献   

9.
10.
Interleukin-6 (IL-6) exerts pro- as well as anti-inflammatory activities in response to infection, injury, or other stimuli that affect the homeostasis of the organism. IL-6-induced expression of acute-phase protein genes in the liver is tightly regulated through both IL-6-induced feedback inhibitors and the activity of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. In previous studies mechanisms for how IL-1beta counteracts IL-6-dependent acute-phase protein gene induction have been proposed. Herein we analyzed IL-1beta-mediated regulation of IL-6-induced expression of the feedback inhibitor SOCS3. In hepatocytes IL-1beta alone does not induce SOCS3 expression, but it counteracts SOCS3-promoter activation in long term studies. Surprisingly, short term stimulation revealed IL-1beta to be a potent enhancer of SOCS3 expression in concert with IL-6. This activity of IL-1beta does not depend on IL-1beta-dependent STAT1-serine phosphorylation but on NF-kappaB-dependent gene induction. Such a regulatory network allows IL-1beta to counteract IL-6-dependent expression of acute-phase protein genes without inhibiting IL-6-induced SOCS3 expression and provides a reasonable mechanism for the IL-1beta-dependent inhibition of acute-phase gene induction, because reduced SOCS3 expression would lead to enhanced IL-6 activity.  相似文献   

11.
12.
C-reactive protein (CRP) is a member of the pentraxin family of proteins and an acute phase reactant. CRP modulates the response to inflammatory stimuli including LPS and C5a. We recently demonstrated that CRP prevents and reverses proteinuria in accelerated nephrotoxic nephritis (NTN). NTN is a model of active inflammatory immune complex-mediated nephritis induced by injection of antiglomerular basement membrane. CRP treatment prevented the induction of NTN in C57BL/6 (B6) mice, increased survival, and reversed ongoing nephritis. Protection was associated with a decrease in IL-1beta and chemokines in the kidney and peritoneal cells as measured by quantitative RT-PCR. However, IL-10(-/-) mice were not protected by CRP either when given before disease onset or when disease activity was maximal. FcgammaRI(-/-) mice developed NTN, but were only transiently protected by CRP treatment. This transient protection was abrogated by cobra venom factor depletion of complement from FcgammaRI(-/-) mice. However, complement depletion did not prevent CRP-mediated protection in B6 mice, and CRP was protective in C3(-/-) mice. The role of macrophages in the protection provided by CRP was tested by treating B6 mice with liposomes containing clodronate. Clodronate-containing liposomes deplete mice of splenic and hepatic macrophages for 5-7 days. Pretreatment of NTN mice with clodronate but not control liposomes completely prevented CRP-mediated protection. These studies suggest that CRP mediates protection from NTN through the induction of IL-10 and that macrophages are required. In addition, FcgammaRI plays an important role but is not the sole mediator of CRP-mediated protection.  相似文献   

13.
Purified serum amyloid P component (SAP), the major acute-phase reactant of mice, induces enhanced interleukin 1 (IL-1) production by elicited monocytes/macrophages in vitro. SAP also enhanced IL-1 elaboration by macrophages from lipopolysaccharide (LPS)-low responder mice and in the presence of polymyxin B, indicating that the small amounts of LPS present in the SAP preparation did not augment IL-1 production. Concentrations of SAP of 0.1 to 10.0 micrograms/ml enhanced IL-1 production by elicited and bacillus Calmette-Guerin (BCG)-activated peritoneal macrophages, but not by resident peritoneal macrophages. The inflammation-induced monocyte/macrophage population displayed selective binding of SAP. The mouse macrophage line P388D1, also could bind SAP and display enhanced IL-1 production in response to SAP. SAP did not bind to the macrophage cell line RAW264.7 nor did it enhance IL-1 secretion by this line. The results suggest that this acute-phase reactant has the potential to enhance inflammatory and immunological events mediated by IL-1.  相似文献   

14.
Complement activation, oxidative damage, and activation of the NLRP3 inflammasome have been implicated in retinal pigment epithelium (RPE) pathology in age-related macular degeneration (AMD). Following priming of RPE cells, the NLRP3 inflammasome can be activated by various stimuli such as lipofuscin-mediated photooxidative damage to lysosomal membranes. We investigated whether products of complement activation are capable of providing the priming signal for inflammasome activation in RPE cells. We found that incubation of primary human RPE cells and ARPE-19 cells with complement-competent human serum resulted in up-regulation of C5a receptor, but not C3a receptor. Furthermore, human serum induced expression of pro-IL-1β and enabled IL-1β secretion in response to lipofuscin phototoxicity, thus indicating inflammasome priming. Complement heat-inactivation, C5 depletion, and C5a receptor inhibition suppressed the priming effect of human serum whereas recombinant C5a likewise induced priming. Conditioned medium of inflammasome-activated RPE cells provided an additional priming effect that was mediated by the IL-1 receptor. These results identify complement activation product C5a as a priming signal for RPE cells that allows for subsequent inflammasome activation by stimuli such as lipofuscin-mediated photooxidative damage. This molecular pathway provides a functional link between key factors of AMD pathogenesis including lipofuscin accumulation, photooxidative damage, complement activation, and RPE degeneration and may provide novel therapeutic targets in this disease.  相似文献   

15.
The pentraxins, serum amyloid P component (SAP) and C-reactive protein (CRP) are acute-phase serum proteins in mice and humans, respectively. Although SAP binds to DNA and chromatin and affects clearance of these autoantigens, no specific receptor for SAP has been identified. CRP is an opsonin, and we have shown that it binds to FcgammaR. Mice deficient in FcgammaR were used to assess the role of these receptors in phagocytosis by pentraxins using zymosan as a ligand. Phagocytosis of zymosan by bone marrow macrophages (BMM) was enhanced by opsonization with SAP or CRP. BMM from mice deficient in all three FcgammaR or in gamma-chain ingested unopsonized zymosan, but phagocytosis of SAP- or CRP-opsonized zymosan was not enhanced. SAP binding to BMM from gamma-chain-deficient mice was also greatly reduced, indicating little or no binding of SAP to FcgammaRII. SAP and CRP opsonized zymosan for phagocytosis by BMM from mice deficient in FcgammaRII or FcgammaRIII. SAP, but not CRP, opsonized zymosan for uptake by neutrophils that express only low levels of FcgammaRI. Together these results indicate that FcgammaRI and FcgammaRIII are receptors for SAP in the mouse. Opsonization of zymosan by CRP is mediated through FcgammaRI. Pentraxins are major proteins of the innate immune system and arose earlier in evolution than Igs. The use of FcgammaR by the pentraxins links innate and adaptive immunity and may have important consequences for processing, presentation, and clearance of the self-Ags to which these proteins bind.  相似文献   

16.
Serum amyloid P component (SAP) is a member of the pentraxin family of proteins. These proteins are characterized by cyclic pentameric structure, calcium-dependent ligand binding, and frequent regulation as acute-phase serum proteins. SAP is the serum precursor of the P component of amyloid. It binds to a broad group of molecules, including autoantigens, through a pattern recognition binding site. The related pentraxin, C-reactive protein (CRP), is a strong acute-phase reactant in man and an opsonin. We previously determined that the binding of CRP to leukocytes occurs through Fc receptors for IgG (FcgammaR). We now report that SAP also binds to FcgammaR and opsonizes particles for phagocytosis by human polymorphonuclear leukocytes (PMN). Specific, saturable binding of SAP to FcgammaRI, FcgammaRIIa, and FcgammaRIIIb expressed on transfected COS cells was detected using SAP-biotin and PE-streptavidin. Zymosan was used to test the functional consequences of SAP and CRP binding to FcgammaR. Both SAP and CRP bound to zymosan and enhanced its uptake by PMN. This enhanced phagocytosis was abrogated by treatment of PMN with wortmannin, a phosphatidylinositol-3 kinase inhibitor, or with piceatannol, a Syk inhibitor, consistent with uptake through FcgammaR. Treatment of PMN with phosphatidylinositol-specific phospholipase C to remove FcgammaRIIIb also decreased phagocytosis of SAP-opsonized zymosan, but not CRP-opsonized zymosan. These results suggest that SAP may function in host defense. In addition, as SAP binds to chromatin, a major immunogen in systemic lupus erythematosus, it may provide a clearance mechanism for this Ag through FcgammaR bearing cells.  相似文献   

17.
Rabbit CRP is similar to human CRP in structure, kinetics of appearance, and binding reactivities to phosphate esters and cationic polymers. CRP in rabbit acute-phase serum migrates either with gamma or with beta, pre-beta electrophoretic mobility, and distinct gamma- and beta-migrating species can be observed simultaneously in some sera. The present study shows that beta-CRP in serum is converted to gamma mobility during isolation and purification. Normal, acute-phase, or CRP-depleted acute-phase rabbit serum restores the beta mobility of purified gamma-CRP, a conversion that does not occur in the presence of EDTA. Serum CRP fails to adsorb to DEAE-cellulose but does adsorb to CM-cellulose, from which it elutes as gamma-mobility antigen. Chelation by EDTA or flotation and removal of lipoproteins from acute phase rabbit serum produces a gamma-mobility CRP that adsorbs to the anion-exchange resin. Lipid-containing fractions from ion-exchange columns as well as VLDL (but not LDL or HDL) isolated by ultracentrifugation change the mobility of purified CRP from gamma to beta, pre-beta. These changes in mobility are not observed in the presence of EDTA or phosphocholine. In acute-phase rabbit serum with CRP of both beta and gamma mobility, the beta form has a higher m.w. and is lipid-associated, whereas the gamma form is a lower m.w., lipid-poor molecule. These results suggest that in serum the association of CRP with lipoproteins, particularly VLDL, is responsible for its beta, pre-beta electrophoretic mobility. Further studies of the association of CRP with lipoprotein in relation to lipoprotein metabolism may provide insight into the biological role of CRP.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号