首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

2.
Inactivation of a dihydropyridine-sensitive calcium current was studied in a cell line (A7r5) derived from smooth muscle of the rat thoracic aorta. Inactivation is faster with extracellular Ca2+ than with Ba2+. In Ba2+, inactivation increases monotonically with depolarization. In Ca2+, inactivation is related to the amount of inward current, so that little inactivation is seen in Ca2+ for brief depolarizations approaching the reversal potential. Longer depolarizations in Ca2+ reveal two components of inactivation, the slower component behaving like that observed in Ba2+. Furthermore, lowering extracellular Ca2+ slows inactivation. These results are consistent with the coexistence of two inactivation processes, a slow voltage-dependent inactivation, and a more rapid current-dependent inactivation which is observable only with Ca2+. Ca(2+)-dependent inactivation is decreased but not eliminated when intracellular Ca2+ is buffered by 10 mM BAPTA, suggesting that Ca2+ acts at a site on or near the channel. We also studied recovery from inactivation after either a short pulse (able to produce significant inactivation only in Ca2+) or a long pulse (giving similar inactivation with either cation). Surprisingly, recovery from Ca(2+)-dependent inactivation was voltage dependent. This suggests that the pathways for recovery from inactivation are similar regardless of how inactivation is generated. We propose a model where Ca(2+)- and voltage-dependent inactivation occur independently.  相似文献   

3.
Permeation and gating properties of the novel epithelial Ca(2+) channel   总被引:5,自引:0,他引:5  
The recently cloned epithelial Ca(2+) channel (ECaC) constitutes the Ca(2+) influx pathway in 1,25-dihydroxyvitamin D(3)-responsive epithelia. We have combined patch-clamp analysis and fura-2 fluorescence microscopy to functionally characterize ECaC heterologously expressed in HEK293 cells. The intracellular Ca(2+) concentration in ECaC-expressing cells was closely correlated with the applied electrochemical Ca(2+) gradient, demonstrating the distinctive Ca(2+) permeability and constitutive activation of ECaC. Cells dialyzed with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid displayed large inward currents through ECaC in response to voltage ramps. The corresponding current-voltage relationship showed pronounced inward rectification. Currents evoked by voltage steps to potentials below -40 mV partially inactivated with a biexponential time course. This inactivation was less pronounced if Ba(2+) or Sr(2+) replaced Ca(2+) and was absent in Ca(2+)-free solutions. ECaC showed an anomalous mole fraction behavior. The permeability ratio P(Ca):P(Na) calculated from the reversal potential at 30 mM [Ca(2+)](o) was larger than 100. The divalent cation selectivity profile is Ca(2+) > Mn(2+) > Ba(2+) approximately Sr(2+). Repetitive stimulation of ECaC-expressing cells induced a decay of the current response, which was greatly reduced if Ca(2+) was replaced by Ba(2+) and was virtually abolished if [Ca(2+)](o) was lowered to 1 nM. In conclusion, ECaC is a Ca(2+) selective channel, exhibiting Ca(2+)-dependent autoregulatory mechanisms, including fast inactivation and slow down-regulation.  相似文献   

4.
In the experiments here, the detailed kinetic properties of the Ca(2+)-independent, depolarization-activated outward currents (Iout) in enzymatically dispersed adult rat atrial myocytes were studied. Although there is only slight attenuation of peak Iout during brief (100 ms) voltage steps, substantial decay is evident during long (10 s) depolarizations. The analyses here reveal that current inactivation is best described by the sum of two exponential components, which we have termed IKf and IKs to denote the fast and slow components, respectively, of Iout decay. At all test potentials, IKf inactivates approximately 20-fold more rapidly than IKs. Neither the decay time constants nor the fraction of Iout remaining at the end of 10-s depolarizations varies over the potential range of 0 to +50 mV, indicating that the rates of inactivation and recovery from inactivation are voltage independent. IKf recovers from inactivation completely, independent of the recovery of IKs, and IKf recovers approximately 20 times faster than IKs. The pharmacological properties of IKf and IKs are similar: both components are sensitive to 4-aminopyridine (1-5 mM) and both are relatively resistant to externally applied tetraethylammonium (50 mM). Taken together, these findings suggest that IKf and IKs correspond to two functionally distinct K+ currents with similar voltage-dependent properties and pharmacologic sensitivities, but with markedly different rates of inactivation and recovery from inactivation. From the experimental data, several gating models were developed in which voltage-independent inactivation is coupled either to channel opening or to the activation of the individual channel subunits. Experimental testing of predictions of these models suggests that voltage-independent inactivation is coupled to activation, and that inactivation of only a single subunit is required to result in functional inactivation of the channels. This model closely approximates the properties of IKf and IKs, as well as the composite outward currents, measured in adult rat atrial myocytes.  相似文献   

5.
The L-type calcium current (ICa) plays an important role in excitation-contraction coupling of heart cells. It is critical for forming the major trigger for Ca(2+)-induced Ca(2+) release from the sarcoplasmic reticulum and hence its feedback regulation is of fundamental biological significance. The channel inactivation sharpens the kinetics and temporal precision of the Ca(2+) signals so that it prevents longer-term increases in free intracellular Ca(2+) concentration. Cardiac L-type Ca(2+) channels are known to inactivate through voltage- and Ca(2+)-dependent mechanisms. Pure voltage-dependent inactivation has a much slower time course of development than Ca(2+)-dependent inactivation and plays minor role in inhibition of Ca(2+) influx into the cell. The major determinant of the inactivation kinetics of Ca(2+) current during depolarization is Ca(2+)-dependent mechanisms. Furthermore, it is possible to distinguish two phases in Ca(2+)-dependent inactivation of calcium current: a slow phase that depends on Ca(2+) flow through the channels (Ca(2+) current-dependent inactivation) and a fast one that depends on Ca(2+) released from the sarcoplasmic reticulum (Ca(2+) release-dependent inactivation). Although both Ca(2+) released from the SR and Ca(2+) permeating channels play a role, SR-released Ca(2+) is the most effective inactivation mechanism in inhibition of Ca(2+) entry through the channel.  相似文献   

6.
Single cardiac Na+ channels were investigated after intracellular proteolysis to remove the fast inactivation process in an attempt to elucidate the mechanisms of channel gating and the role of slow inactivation. Na+ channels were studied in inside-out patches excised from guinea-pig ventricular myocytes both before and after very brief exposure (2-4 min) to the endopeptidase, alpha-chymotrypsin. Enzyme exposure times were chosen to maximize removal of fast inactivation and to minimize potential nonspecific damage to the channel. After proteolysis, the single channel current-voltage relationship was approximately linear with a slope conductance of 18 +/- 2.5 pS. Na+ channel reversal potentials measured before and after proteolysis by alpha-chymotrypsin were not changed. The unitary current amplitude was not altered after channel modification suggesting little or no effect on channel conductance. Channel open times were increased after removal of fast inactivation and were voltage-dependent, ranging between 0.7 (-70 mV) and 3.2 (-10 mV) ms. Open times increased with membrane potential reaching a maximum at -10 mV; at more positive membrane potentials, open times decreased again. Fast inactivation appeared to be completely removed by alpha-chymotrypsin and slow inactivation became more apparent suggesting that fast and slow inactivation normally compete, and that fast inactivation dominates in unmodified channels. This finding is not consistent with a slow inactivated state that can only be entered through the fast inactivated state, since removal of fast inactivation does not eliminate slow inactivation. The data indicate that cardiac Na+ channels can enter the slow inactivated state by a pathway that bypasses the fast inactivated state and that the likelihood of entering the slow inactivated state increases after removal of fast inactivation.  相似文献   

7.
Using the whole-cell patch-clamp technique, we have studied the properties of alpha(1E) Ca(2+) channel transfected in cardiac myocytes. We have also investigated the effect of foreign gene expression on the intrinsic L-type current (I(Ca,L)). Expression of green fluorescent protein significantly decreased the I(Ca,L). By contrast, expression of alpha(1E) with beta(2b) and alpha(2)/delta significantly increased the total Ca(2+) current, and in these cells a Ca(2+) antagonist, PN-200-110 (PN), only partially blocked the current. The remaining PN-resistant current was abolished by the application of a low concentration of Ni(2+) and was little affected by changing the charge carrier from Ca(2+) to Ba(2+) or by beta-adrenergic stimulation. On the basis of its voltage range for activation, this channel was classified as a high-voltage activated channel. Thus the expression of alpha(1E) did not generate T-like current in cardiac myocytes. On the other hand, expression of alpha(1E) decreased I(Ca,L) and slowed the I(Ca,L) inactivation. This inactivation slowing was attenuated by the beta(2b) coexpression, suggesting that the alpha(1E) may slow the inactivation of I(Ca,L) by scrambling with alpha(1C) for intrinsic auxiliary beta.  相似文献   

8.
As amply documented by electrophysiology, depolarisation in Paramecium induces a Ca(2+) influx selectively via ciliary voltage-dependent Ca(2+)-channels, thus inducing ciliary beat reversal. Subsequent downregulation of ciliary Ca(2+) has remained enigmatic. We now analysed this aspect, eventually under overstimulation conditions, by quenched-flow/cryofixation, combined with electron microscope X-ray microanalysis which registers total calcium concentrations, [Ca]. This allows to follow Ca-signals within a time period (> or =30ms) smaller than one ciliary beat ( approximately 50ms) and beyond. Particularly under overstimulation conditions ( approximately 10(-5)M Ca(2+) before, 0.5mM Ca(2+) during stimulation) we find in cilia a [Ca] peak at approximately 80ms and its decay to near-basal levels within 110ms (90%) to 170ms (100% decay). This [Ca] wave is followed, with little delay, by a [Ca] wave into subplasmalemmal Ca-stores (alveolar sacs), culminating at approximately 100ms, with a decay to original levels within 170ms. Also with little delay [Ca] slightly increases in the cytoplasm below. This implies rapid dissipation of Ca(2+) through the ciliary basis, paralleled by a rapid, transient uptake by, and release from cortical stores, suggesting fast exchange mechanisms to be analysed as yet. This novel type of coupling may be relevant for some phenomena described for other cells.  相似文献   

9.
We examined the concentration dependence of currents through Ca(V)3.1 T-type calcium channels, varying Ca(2+) and Ba(2+) over a wide concentration range (100 nM to 110 mM) while recording whole-cell currents over a wide voltage range from channels stably expressed in HEK 293 cells. To isolate effects on permeation, instantaneous current-voltage relationships (IIV) were obtained following strong, brief depolarizations to activate channels with minimal inactivation. Reversal potentials were described by P(Ca)/P(Na) = 87 and P(Ca)/P(Ba) = 2, based on Goldman-Hodgkin-Katz theory. However, analysis of chord conductances found that apparent K(d) values were similar for Ca(2+) and Ba(2+), both for block of currents carried by Na(+) (3 muM for Ca(2+) vs. 4 muM for Ba(2+), at -30 mV; weaker at more positive or negative voltages) and for permeation (3.3 mM for Ca(2+) vs. 2.5 mM for Ba(2+); nearly voltage independent). Block by 3-10 muM Ca(2+) was time dependent, described by bimolecular kinetics with binding at approximately 3 x 10(8) M(-1)s(-1) and voltage-dependent exit. Ca(2+)(o), Ba(2+)(o), and Mg(2+)(o) also affected channel gating, primarily by shifting channel activation, consistent with screening a surface charge of 1 e(-) per 98 A(2) from Gouy-Chapman theory. Additionally, inward currents inactivated approximately 35% faster in Ba(2+)(o) (vs. Ca(2+)(o) or Na(+)(o)). The accelerated inactivation in Ba(2+)(o) correlated with the transition from Na(+) to Ba(2+) permeation, suggesting that Ba(2+)(o) speeds inactivation by occupying the pore. We conclude that the selectivity of the "surface charge" among divalent cations differs between calcium channel families, implying that the surface charge is channel specific. Voltage strongly affects the concentration dependence of block, but not of permeation, for Ca(2+) or Ba(2+).  相似文献   

10.
L-type Ca(2+) channel (L-channel) activity of the skeletal muscle dihydropyridine receptor is markedly enhanced by the skeletal muscle isoform of the ryanodine receptor (RyR1) (Nakai, J., R.T. Dirksen, H. T. Nguyen, I.N. Pessah, K.G. Beam, and P.D. Allen. 1996. Nature. 380:72-75.). However, the dependence of the biophysical and pharmacological properties of skeletal L-current on RyR1 has yet to be fully elucidated. Thus, we have evaluated the influence of RyR1 on the properties of macroscopic L-currents and intracellular charge movements in cultured skeletal myotubes derived from normal and "RyR1-knockout" (dyspedic) mice. Compared with normal myotubes, dyspedic myotubes exhibited a 40% reduction in the amount of maximal immobilization-resistant charge movement (Q(max), 7.5 +/- 0.8 and 4.5 +/- 0.4 nC/muF for normal and dyspedic myotubes, respectively) and an approximately fivefold reduction in the ratio of maximal L-channel conductance to charge movement (G(max)/Q(max)). Thus, RyR1 enhances both the expression level and Ca(2+) conducting activity of the skeletal L-channel. For both normal and dyspedic myotubes, the sum of two exponentials was required to fit L-current activation and resulted in extraction of the amplitudes (A(fast) and A(slow)) and time constants (tau(slow) and tau(fast)) for each component of the macroscopic current. In spite of a >10-fold in difference current density, L-currents in normal and dyspedic myotubes exhibited similar relative contributions of fast and slow components (at +40 mV; A(fast)/[A(fast) + A(slow)] approximately 0.25). However, both tau(fast) and tau(slow) were significantly (P < 0.02) faster for myotubes lacking the RyR1 protein (tau(fast), 8.5 +/- 1.2 and 4.4 +/- 0.5 ms; tau(slow), 79.5 +/- 10.5 and 34.6 +/- 3.7 ms at +40 mV for normal and dyspedic myotubes, respectively). In both normal and dyspedic myotubes, (-) Bay K 8644 (5 microM) caused a hyperpolarizing shift (approximately 10 mV) in the voltage dependence of channel activation and an 80% increase in peak L-current. However, the increase in peak L-current correlated with moderate increases in both A(slow) and A(fast) in normal myotubes, but a large increase in only A(fast) in dyspedic myotubes. Equimolar substitution of Ba(2+) for extracellular Ca(2+) increased both A(fast) and A(slow) in normal myotubes. The identical substitution in dyspedic myotubes failed to significantly alter the magnitude of either A(fast) or A(slow). These results demonstrate that RyR1 influences essential properties of skeletal L-channels (expression level, activation kinetics, modulation by dihydropyridine agonist, and divalent conductance) and supports the notion that RyR1 acts as an important allosteric modulator of the skeletal L-channel, analogous to that of a Ca(2+) channel accessory subunit.  相似文献   

11.
Effects of changing cytosolic free Mg(2+) concentration on L-type Ca(2+) (I(Ca)) and Ba(2+) currents (I(Ba)) were investigated in rat ventricular myocytes voltage-clamped with pipettes containing 0.2 or 1.8mM [Mg(2+)] ([Mg(2+)](p)) buffered with 30mM citrate and 10mM ATP. Increasing [Mg(2+)](p) from 0.2 to 1.8mM reduced current amplitude and accelerated its decay under a variety of experimental conditions. To investigate the mechanism for these effects, steady-state and instantaneous current-voltage relationships were studied with two-pulse and tail current (I(T)) protocols, respectively. Increasing [Mg(2+)](p) shifted the V(M) for half inactivation by -20mV but dramatically decreased I(Ca) amplitude at all potentials tested, consistent with a change in gating kinetics that decreases channel availability. This conclusion was supported by analysis of I(T) amplitude, but these latter experiments also suggested that, in the millimolar concentration range, [Mg(2+)](p) might also inhibit permeation through open Ca(2+) channels at positive V(M).  相似文献   

12.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

13.
Intracellular Ca2+ can inhibit the activity of voltage-gated Ca channels by modulating the rate of channel inactivation. Ca(2+)-dependent inactivation of these channels may be a common negative feedback process important for regulating Ca2+ entry under physiological and pathological conditions. This article demonstrates that the inactivation of cardiac L-type Ca channels, reconstituted into planar lipid bilayers and studied in the presence of a dihydropyridine agonist, is sensitive to Ca2+. The rates and extents of inactivation, determined from ensemble averages of unitary Ba2+ currents, decreased when the calcium concentration facing the intracellular surface of the channel ([Ca2+]i) was lowered from approximately 10 microM to 20 nM by the addition of Ca2+ chelators. The rates and extents of Ba2+ current inactivation could also be increased by subsequent addition of Ca2+ raising the [Ca2+]i to 15 microM, thus demonstrating that the Ca2+ dependence of inactivation could be reversibly regulated by changes in [Ca2+]i. In addition, reconstituted Ca channels inactivated more quickly when the inward current was carried by Ca2+ than when it was carried by Ba2+, suggesting that local increases in [Ca2+]i could activate Ca(2+)-dependent inactivation. These data support models in which Ca2+ binds to the channel itself or to closely associated regulatory proteins to control the rate of channel inactivation, and are inconsistent with purely enzymatic models for channel inactivation.  相似文献   

14.
Calcium-dependent inactivation has been described as a negative feedback mechanism for regulating voltage-dependent calcium influx in cardiac cells. Most recent evidence points to the C-terminus of the alpha1C subunit, with its EF-hand binding motif, as being critical in this process. The EF-hand binding motif is mostly conserved between the C-termini of six of the seven alpha1 subunit Ca2+ channel genes. The role of E1537 in the C-terminus of the alpha1C calcium channel inactivation was investigated here after expression in Xenopus laevis oocytes. Whole-cell currents were measured in the presence of 10 mM Ba2+ or 10 mM Ca2+ after intracellular injection of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Against all expectations, our results showed a significant reduction in the rate of voltage-dependent inactivation as measured in Ba2+ solutions for all E1537 mutants, whereas calcium-dependent inactivation appeared unscathed. Replacing the negatively charged glutamate residue by neutral glutamine, glycine, serine, or alanine significantly reduced the rate of Ba2+-dependent inactivation by 1.5-fold (glutamine) to 3.5-fold (alanine). The overall rate of macroscopic inactivation measured in Ca2+ solutions was also reduced, although a careful examination of the distribution of the fast and slow time constants suggests that only the slow time constant was significantly reduced in the mutant channels. The fast time constant, the hallmark of Ca2+-dependent inactivation, remained remarkably constant among wild-type and mutant channels. Moreover, inactivation of E1537A channels, in both Ca2+ and Ba2+ solutions, appeared to decrease with membrane depolarization, whereas inactivation of wild-type channels became faster with positive voltages. All together, our results showed that E1537 mutations impaired voltage-dependent inactivation and suggest that the proximal part of the C-terminus may play a role in voltage-dependent inactivation in L-type alpha1C channels.  相似文献   

15.
We studied the effects of trypsin on L-type calcium current in the A7r5 smooth muscle cell line. Intracellular dialysis with trypsin increased the whole-cell current up to fivefold. The effect was concentration dependent, and was prevented by soybean trypsin inhibitor. Ensemble analysis indicated an increase in the number of functional channels, and possibly a smaller increase in the open probability, with no change in the single channel current. The shape of the current-voltage curve was unaffected. Trypsin also nearly eliminated inactivation of currents carried by Ba2+, but had little or no effect on the rapid inactivation process in Ca2+, This indicates that trypsin removes voltage-dependent but not Ca(2+)-dependent inactivation, suggesting the existence of distinct protein domains for these two mechanisms of calcium channel inactivation.  相似文献   

16.
Whole-cell patch-clamp techniques were applied to Chinese hamster ovary cells stably expressing cloned smooth muscle Ca(2+) channel alpha(1)-subunits. In the presence of Ba(2+) as a charge carrier, U-shaped inactivation was observed in the presence and absence of Ca(2+) agonists. Also, tail currents deactivated slowly when conditioning steps of positive potential were applied. The deactivation time constant was decreased by hyperpolarizing the repolarization step. Application of ATP-gamma-S or H-7 had little effect on the conditions necessary to induce slow tail, suggesting involvement of physical processes in the channel protein. In the presence of Bay K 8644, additional application of nifedipine decreased the amplitudes of the test and tail currents induced by a test step preceded by a conditioning step to +80 mV, but did not affect the decay time constant of the tail current. From these results and assumptions we have drawn up a kinetic scheme with one closed state, two open states (O(1), O(2)) and two inactivated states linked to the closed state and open state O(1), respectively, i.e., open state O(2) protected from inactivation. Computer calculation reconstructed slow deactivation and U-shaped inactivation properties. A similar kinetic scheme with Ca(2+)-agonist-binding states accounted for the results in the presence of Ca(2+) agonists.  相似文献   

17.
Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.  相似文献   

18.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

19.
A novel voltage-clamp protocol was developed to test whether slow inactivation of Ca2+ current occurs during bursting in insulin-secreting cells. Single insulin-secreting HIT cells were patch-clamped and their Ca2+ currents were isolated pharmacologically. A computed beta-cell burst was used as a voltage-clamp command and the net Ca2+ current elicited was determined as a cadmium difference current. Ca2+ current rapidly activated during the computed plateau and spike depolarizations and then slowly decayed. Integration of this Ca2+ current yielded an estimate of total Ca influx. To further analyze Ca2+ current inactivation during a burst, repetitive test pulses to + 10 mV were added to the voltage command. Current elicited by these pulses was constant during the interburst, but then slowly and reversibly decreased during the depolarizing plateau. This inactivation was reduced by replacing external Ca2+ with Ba2+ as a charge carrier, and in some cells inactivation was slower in Ba2+. Experimental results were compared with the predictions of the Keizer-Smolen mathematical model of bursting, after subjecting model equations to identical voltage commands. In this model, bursting is driven by the slow, voltage-dependent inactivation of Ca current during the plateau active phase. The K-S model could account for the slope of the slow decay of spike-elicited Ca current, the waveform of individual Ca current spikes, and the suppression of test pulse-elicited Ca current during a burst command. However, the extent and rate of fast inactivation were underestimated by the model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Sequence analysis of the human genome permitted cloning of five Ca(2+)-channel beta(2) splice variants (beta(2a)-beta(2e)) that differed only in their proximal amino-termini. The functional consequences of such beta(2)-subunit diversity were explored in recombinant L-type channels reconstituted in HEK 293 cells. Beta(2a) and beta(2e) targeted autonomously to the plasma membrane, whereas beta(2b)-beta(2d) localized to the cytosol when expressed in HEK 293 cells. The pattern of modulation of L-type channel voltage-dependent inactivation gating correlated with the subcellular localization of the component beta(2) variant-membrane-bound beta(2a) and beta(2e) subunits conferred slow(er) channel inactivation kinetics and displayed a smaller fraction of channels recovering from inactivation with fast kinetics, compared to beta(2b)-beta(2d) channels. The varying effects of beta(2) subunits on inactivation gating were accounted for by a quantitative model in which L-type channels reversibly distributed between fast and slow forms of voltage-dependent inactivation-membrane-bound beta(2) subunits substantially decreased the steady-state fraction of fast inactivating channels. Finally, the beta(2) variants also had distinctive effects on L-type channel steady-state activation gating, as revealed by differences in the waveforms of tail-activation (G-V) curves, and conferred differing degrees of prepulse facilitation to the channel. Our results predict important physiological consequences arising from subtle changes in Ca(2+)-channel beta(2)-subunit structure due to alternative splicing and emphasize the utility of splice variants in probing structure-function mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号