首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A GM 1 ganglioside derivative bearing a photoreactive nitrophenyl azide group and tritium labeled at the acetyl group of N-acetylneuraminic acid, has been administered to cultured human fibroblasts. With photolabeling experiments we found that a portion of the ganglioside in the cell cytosol was associated with a soluble protein of about 30 kDa.  相似文献   

2.
Interactions between gangliosides and proteins at the exoplasmic surface of the sphingolipid-enriched membrane domains can be studied by ganglioside photolabeling combined with cell surface biotin labeling. In the present paper, we report on the results obtained using a novel radioactive photoactivable derivative of GM1 ganglioside, carrying the photoactivable nitrophenylazide group at the external galactose.After cell photolabeling with the radioactive photoactivable derivative of GM1 and cell surface biotin labeling, sphingolipid-enriched domains were prepared from rat cerebellar neurons differentiated in culture and further purified by immunoprecipitation with streptavidin-coupled beads. Among proteins belonging to the sphingolipid-enriched domains that were biotin labeled, thus bearing an exoplasmic domain, a few were also cross-linked by the radioactive photoactivable ganglioside. In particular, two protein bands showing apparent molecular mass of 135 and 35 kDa were intensely photolabeled. The 135 kDa protein was immunologically identified as the GPI-anchored neural cell adhesion molecule TAG-1. These data suggest that hydrophilic interaction between the exoplasmic domains of the protein and the ganglioside sialooligosaccharide chain could exist. Published in 2004.  相似文献   

3.
The incubation of cultured rat cerebellar granule cells with a photoreactive derivative of radiolabeled GM1 ganglioside, [3H]GM1(N3), followed by illumination, led to the specific association of ganglioside to cell proteins. After 30 min of incubation only a few out of the cell proteins became radiolabeled. Two of these, at apparent molecular weights of 95 and 112 kDa, are interacting with the portion of associated ganglioside that is released by trypsin treatment; others, in the region between 31 and 44 kDa, are probably bound to molecules of ganglioside inserted into the outer membrane layer, thus showing that the ganglioside association to the cell surface is a selective phenomenon, involving specific proteins. Increasing the incubation time up to 24 h resulted in a larger number of radiolabeled proteins, probably as a consequence of the internalization and metabolic processing of administered [3H]GM1(N3). In fact, photoreactive and radioactive metabolic derivatives of [3H]GM1(N3) can also interact with a number of proteins. After 24 h incubation, some radioactivity was also associated to cytosolic proteins. Again in this case the interaction with proteins seems to be a specific process involving only a few out of the total cytosolic proteins.  相似文献   

4.
Free sialic acid has been found in the cell-conditioned medium of human foreskin fibroblasts. It is proposed that the accumulation of extracellular sialic acid may result from the hydrolysis of GM3 ganglioside on the cell surface of these fibroblasts. Sialidase activities with GM3 ganglioside and sialyllactitol as substrates were demonstrated in cell-conditioned medium, and the levels of their activities correlated positively with cell density. The GM3 sialidase activity at pH 4.5 was 4.1 and 38 pmol/h/ml of medium at sparse and confluent densities, respectively; the corresponding activities with sialyllactitol as the substrate were 12 and 75 pmol/h/ml of medium (pH 4.5). The pH versus activity profiles with GM3 as the substrate suggested the presence of a second sialidase with an optimal activity at pH 6.5 in the conditioned medium of preconfluent cells. This activity was virtually absent in the medium of contact-inhibited cells and could not be assayed with sialyllactitol as the substrate. The turnover of cell surface GM3 was assessed by pulse labeling human foreskin fibroblasts with a radioactive precursor of sialic acid ([1-14C]N-acetylmannosamine) and a radioactive precursor of ceramide ([3,3-3H2]serine). During a chase period of 24 h turnover of the doubly labeled cellular GM3 was observed; there was a loss of about 35% of the 14C-labeled sialic acid without any measureable loss of 3H-labeled ceramide from GM3. We have speculated that the enzyme-catalyzed removal of sialic acid from the GM3 ganglioside on the extracellular aspect of the plasma membrane may be a necessary event involved in the modulation of cell growth.  相似文献   

5.
A new procedure is described for preparing the molecular species of GM1 ganglioside that carry a single fatty acid (myristic (C14:0), stearic (C18:0), arachidic (C20:0) or lignoceric (C24:0) acid) and a single long chain base (C18 or C20 sphingosine, C18 or C20 sphinganine, each of them in natural 3D(+)erythro or unnatural 3L(-)threo form). The procedure consisted of the following steps: a) alkaline hydrolysis of GM1 ganglioside in the presence of tetramethylammonium hydroxide, which produces de-N-acylation of the ceramide and de-N-acetylation of the sialic acid residue; b) specific re-N-acylation at the long chain base amino group with a new fatty acid (myristic, stearic, arachidic, or lignoceric) in the presence of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride; and c) final re-N-acetylation at the level of the sialic acid residue. GM1 ganglioside molecular species, completely homogeneous in the ceramide portion, were prepared by reversed phase high performance liquid chromatography. The GM1 ganglioside molecular species were analyzed for saccharide, fatty acid, and long chain base composition by chemical and spectrometric analyses. Using a combination of the two procedures, 32 different molecular species of GM1 ganglioside, over 99% homogeneous, have been prepared.  相似文献   

6.
In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The metabolism of GM3 ganglioside in cultured human foreskin fibroblasts was investigated by labeling cultured cells with [1-3H]-galactose for 48 hours, followed by a 48 hour chase. More than 80% of the radioactivity associated with GM3 was found in the hexose portion of the carbohydrate chain, whereas approximately 12% of the radioactivity was observed in the sialic acid moiety. The hexose and sialic acid residues lost 42% and 53% of their initial radioactivity, respectively, during the chase period, indicating an active metabolism of these sugar residues of GM3 in growing cultures.  相似文献   

8.
The sialidase activities with GM3 ganglioside and sialyllactitol were demonstrated in the conditioned medium of human fibroblasts. pH versus activity profiles of conditioned medium with GM3 as substrate suggested the presence of two sialidases with optimal activities at pH 4.5 and pH 6.5. The GM3 sialidase activity at pH 6.5 was suppressed in the medium of contact-inhibited cells. This sialidase may function in the metabolism of cell surface GM3 since there was a selective loss of labeled sialic acid from GM3 at different times of incubation after pulse-labeling with a radioactive sialic acid precursor ([3H]N-acetyl-mannosamine) and a radioactive ceramide precursor ([14C]serine). In addition, a sialidase inhibitor, 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (NeuAc-2-en) resulted in a reversible growth inhibitory effect and the suppression of the sialidase activity in the medium. We have speculated that GM3 hydrolysis on the cell surface by the sialidase may be coordinated with the cell cycle and may be at its maximum during early in the G1 phase.  相似文献   

9.
Ganglioside GM1(NeuAc), labeled at the C-3 position of sphingosine with tritium, was injected into C3H/He, C57BL/10, B10.AQR mice intraperitoneally. The incorporation and the distribution of the radioactivity in various organs were examined. The injected [3H]GM1(NeuAc) was mainly incorporated in the liver and hydrolyzed sequentially. Sialic acid of ganglioside GM1(NeuAc) and metabolites was converted to N-glycolyl type from N-acetyl type. An appreciable amount of the sphingosine moiety in the administered GM1(NeuAc), moreover, was reutilized, being converted to sphingomyelin, and incorporated into alkyl chain of the ether lipid in phosphatidylethanolamine. The distributions of radioactivity in the metabolites of GM1(NeuAc) administered to the three strains of mice were different from each other. In other organs, GM1(NeuAc) was incorporated and metabolized only slightly. The N-methylamide, at the carboxyl group of the sialic acid, of the labeled ganglioside GM1(GM1(NeuAc)-NMe) was injected into C3H/He mice. Most of the administered [3H]GM1(NeuAc)-NMe was incorporated in the liver, and was metabolized to GM3(NeuAc)-NMe, via GM2(NeuAc)-NMe, within 24 h. GM3(NeuAc)-NMe was the only radioactive compound in the subsequent 10 weeks, but disappeared from the liver gradually. N-Methylamide-modified gangliosides were resistant to hydrolysis by mouse hepatic sialidase, to elongation by glycosyltransferase and to N-glycolylation at N-acetylneuraminic acid by monooxygenase.  相似文献   

10.
The oligosaccharide portion of ganglioside GM1 was found to enhance neuritogenesis by S20Y murine neuroblastoma cells grown in vitro. The average length of the neurites produced by cells grown in the presence of the oligosaccharide portion of GM1 was comparable to that of cells grown in the presence of intact GM1. The processes of these cells were significantly longer (p less than 0.005, pooled t test) than those of cells grown in the presence of comparable concentrations of sialic acid, lactose, sialyllactose, GD1a, or the oligosaccharide moiety of GD1a. These results suggest that it is the oligosaccharide portion of GM1 that is responsible for the ability of GM1 to enhance process outgrowth by S20Y neuroblastoma cells.  相似文献   

11.
We report molecular dynamics simulation of fully hydrated lipid bilayer of dimyristoyl phosphatidyl choline (DMPC) at room temperature with ganglioside GM1 attached to it in the upper layer under periodic boundary conditions. The simulation results indicate that the presence of a single GM1 molecule has local effects on the bilayer. Three sugar residues (GalNAc-Gal-Glc) of the pentasaccharide head group of GM1 remain on the lipid surface where as the NeuNAc residue extends out in the aqueous layer. The radial distribution functions suggest ordering of water molecules near the glycerol and carboxyl group of the sialic acid in the upper layer. One of the ceramide chains of GM1, the sphingosine chain, folds up and is stacked under the sugar residues lying on the surface. The other ceramide chain is inserted into the lipid bilayer. The arrangement of the polar head group as well as the acyl chains of the lipids which are immediate neighbours of the GM1 are modified compared to the non-neighbour ones and others at the lower layer. The time average conformation of GM1-pentasaccharide is stabilized by a number of inter residue hydrogen bonds that were observed experimentally. The trajectory average conformation of GM1-pentasaccharide was docked on to the cholera toxin molecule and the minimized complex reveals alternative binding modes between the toxin and the GM1-pentasaccharide moiety. The results of these simulation studies might help to understand the structure and nature of the effects of GM1 on the membrane at atomic resolution.  相似文献   

12.
N-Glycolylneuraminic acid containing GM1, GM1(NeuGc), was prepared by semisynthetic procedure. The procedure makes use of GM1 ganglioside deacetylated at the level of sialic acid residue (deAc-GM1) and of 1,3-dioxalan-2,4-dione. DeAc-GM1 is prepared from GM1 by alkaline hydrolysis in the presence of tetramethylammonium hydroxide and the glycolylating compound by reaction of glycolic acid with phosgene in dioxane, followed by cyclization under vacuum. Mass spectrometric and nuclear magnetic resonance spectroscopy analyses clearly indicated the presence, in the neosynthesized ganglioside of a glycolic group in the sialic acid residue. Laser-light scattering measurements show that GM1(NeuGc) aggregates in aqueous media being present in solution as micelles with a molecular weight of 576,000 and a hydrodynamic radius of 62.4 A as determined at 25 degrees C. GM1(NeuGc) promotes neurite outgrowth in N-2a cells to a similar degree as GM1(NeuAc), but shows different behaviour under treatment with sialidase from Arthrobacter ureafaciens.  相似文献   

13.
Several derivatives of ganglioside GM2 were synthesized for mapping of the binding epitope of a monoclonal antibody raised against this ganglioside. The GM2 ganglioside was modified in both the hydrophobic and the hydrophobilic part of the molecule. The synthesized derivatives were characterized with fast atom bombardment mass spectrometry (FAB-MS). Affinity of the monoclonal antibody for the GM2 derivatives was determined by enzyme-linked immunosorbent assay (ELISA) on microtitre plates or by TLC immunostaining. Modifying the GM2 sialic acid by deacetylation or blocking of the carboxyl moiety abolished the binding to the monoclonal antibody while the cleaving of the glycol group on the sialic acid tail led to a 70% reduced binding affinity. Removal of the fatty acid (lyso-GM2) eliminated the binding to the antibody. GM2 derivatives with fatty acid moieties of 8 carbon atoms or less showed almost no reactivity. GM2 with saturated fatty acids 16:0, 18:0 and 20:0 had binding affinity similar to natural GM2, while the 24:0 fatty acid had only half the binding affinity. The results demonstrate the importance of ganglioside fatty acid composition with regard to ligand binding between the monoclonal antibody and its specific ganglioside antigen. Thus, caution must be shown in the application of immunaffinity methods with monoclonal antibodies for the quantitative determination of glycosphingolipids from different tissues.  相似文献   

14.
The lateral diffusion coefficient of ganglioside GM1 incorporated into preformed dimyristoylphosphatidylcholine (DMPC) vesicles has been investigated under a variety of conditions using the technique of fluorescence photobleaching recovery. For these studies the fluorescent probe 5-(((2-Carbohydrazino)methyl)thio)acetyl) amino eosin was covalently attached to the periodate-oxidized sialic acid residue of ganglioside GM1. This labeled ganglioside exhibited a behavior similar to that of the intact ganglioside, and was able to bind cholera toxin. The lateral diffusion coefficient of the ganglioside was dependent upon the gel-liquid crystalline transition of DMPC. Above Tm the lateral diffusion coefficient of the ganglioside was 4.7 X 10(-9) cm2 s-1 (with greater than 80% fluorescence recovery). This diffusion coefficient is significantly slower than the one previously observed for phospholipids in DMPC bilayers. The addition of increasing amounts of ganglioside, up to a maximum of 10 mol %, did not have a significant effect on the lateral diffusion coefficient or in the percent recovery. At 30 degrees C, the lateral mobility of ganglioside GM1 was not affected by the presence of 5 mM Ca2+, suggesting that, at least above Tm, Ca2+ does not induce a major perturbation in the lateral organization of the ganglioside molecules. The addition of stoichiometric amounts of cholera toxin to samples containing either 1 or 10 mol % ganglioside GM1 produced only a small decrease in the measured diffusion coefficient. The fluorescence recovery after photobleaching experiments were complemented with excimer formation experiments using pyrene-phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Several GM3 derivatives have been synthesized. Among them were lyso-GM3 derivatives and GM3 analogues with modifications in the sialic acid moiety. They were used as glycolipid acceptors in assays for GM2 and GD3 synthase of rat liver Golgi. Analysis of the resulting enzyme activities and of the reaction products revealed different substrate specificities for GM2 and GD3 synthase although the normal glycolipid acceptor for both transferases is ganglioside GM3. Specificity of GD3 synthase is strongly determined by the substrate's negative charge and the acyl residue in amide bond to the amino group of neuraminic acid, while GM2 synthase reacts quite indifferently to these changes in the sialic moiety of the substrate. Both enzymes seem to be sensitive to the spatial extension at the neuraminic acid's carboxylic group.  相似文献   

16.
Sphingolipid activator proteins (SAP) are relatively low-molecular-mass proteins that stimulate the hydrolysis of specific sphingolipids by the required lysosomal enzymes. SAP-1 or sulfatide/GM1 ganglioside activator protein has previously been demonstrated to stimulate the enzymatic hydrolysis of sulfatide, GM1 ganglioside and globotriaosylceramide. Using monospecific rabbit antibodies against human liver sulfatide/GM1 activator, the biosynthesis and processing of this activator were studied in cultured skin fibroblasts from controls and patients with GM1 gangliosidosis and a variant form of metachromatic leukodystrophy. When [35S]methionine was presented in the medium to control human fibroblasts for 4 h, the majority of the immunoprecipitable radiolabeling was confined to bands within three regions of apparent molecular mass 65-70, 35-52 and 8-13 kDa. The only immunoprecipitable radiolabeled species excreted into the medium when NH4Cl was present had an apparent molecular mass of 70 kDa. When the excretion products were given to fresh cells followed by incubation for up to 24 h there was production of the mature species. Treatment of the 70 kDa form with endoglycosidase F resulted in production of a 53 kDa molecular mass form. Pulse-chase experiments indicated that the initial immunoprecipitable translation product was 65 kDa which increased to 70 kDa over the next hour. The 65 kDa species must result from co-translational glycosylation of the polypeptide chain. Apparently, intralysosomal processing converts the 13 kDa form to the 8-11 kDa species. The cells from the patient with GM1 gangliosidosis could not process to the smallest species found in controls due to the deficiency of acid beta-galactosidase. Patients who have a variant form of metachromatic leukodystrophy do not make any immunoprecipitable radiolabeled products in the cells or in the media. This indicates a severe mutation in the gene coding for this activator protein. The production of such small mature species from a relatively large precursor form may regulate the production of this interesting protein.  相似文献   

17.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

18.
GM1 specifically interacts with alpha-synuclein and inhibits fibrillation   总被引:2,自引:0,他引:2  
Martinez Z  Zhu M  Han S  Fink AL 《Biochemistry》2007,46(7):1868-1877
The aggregation of alpha-synuclein is believed to be a key step in the etiology of Parkinson's disease. Alpha-synuclein is found in the cytosol and is associated with membranes in the presynaptic region of neurons and has recently been reported to be associated with lipid rafts and caveolae. We examined the interactions between several brain sphingolipids and alpha-synuclein and found that alpha-synuclein specifically binds to ganglioside GM1-containing small unilamellar vesicles (SUVs). This results in the induction of substantial alpha-helical structure and inhibition or elimination of alpha-synuclein fibril formation, depending on the amount of GM1 present. SUVs containing total brain gangliosides, gangliosides GM2 or GM3, or asialo-GM1 had weak inhibitory effects on alpha-synuclein fibrillation and induced some alpha-helical structure, while all other sphingolipids studied showed negligible interaction with alpha-synuclein. alpha-Synuclein binding to GM1-containing SUVs was accompanied by formation of oligomers of alpha-synuclein. The familial mutant A53T alpha-synuclein interacted with GM1-containing SUVs in an analogous manner to wild type, whereas the A30P mutant showed minimal interaction. This is the first detailed report showing a direct association between GM1 and alpha-synuclein, which is attributed to specific interaction between helical alpha-synuclein and both the sialic acid and carbohydrate moieties of GM1. The recruitment of alpha-synuclein by GM1 to caveolae and lipid raft regions in membranes could explain alpha-synuclein's localization to presynaptic membranes and raises the possibility that perturbation of GM1/raft association could induce changes in alpha-synuclein that contribute to the pathogenesis of PD.  相似文献   

19.
Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号