首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ~15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.  相似文献   

2.

Background

Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses.

Results

The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Lex and H type 2 antennae in sialylated complex-type N-glycans.

Conclusion

The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans.  相似文献   

3.
Processes associated with late events of N-glycosylation within the plant Golgi complex are a major limitation to the use of plant-based systems to produce recombinant pharmaceutical proteins for parenteral administration. Specifically, sugars added to the N-glycans of a recombinant protein during glycan maturation to complex forms (e.g. β1,2 xylose and α1,3 fucose) can render the product immunogenic. In order to avoid these sugars, the human enzyme α-L-iduronidase (IDUA, EC 3.2.1.76), with a C-terminal ER-retention sequence SEKDEL, was expressed in seeds of complex-glycan-deficient (cgl) mutant and wild-type (Col-0) Arabidopsis thaliana, under the control of regulatory (5'-, signal-peptide-encoding-, and 3'-) sequences from the arcelin 5-I gene of Phaseolus vulgaris (cgl-IDUA-SEKDEL and Col-IDUA-SEKDEL, respectively). The SEKDEL motif had no adverse effect on the specific activity of the purified enzyme. Surprisingly, the majority of the N-glycans of Col-IDUA-SEKDEL were complex N-glycans (i.e. contained xylose and/or fucose) (88 %), whereas complex N-glycans comprised a much lower proportion of the N-glycans of cgl-IDUA-SEKDEL (26 %), in which high-mannose forms were predominant. In contrast to the non-chimeric IDUA of cgl seeds, which is mainly secreted into the extracellular spaces, the addition of the SEKDEL sequence to human recombinant IDUA expressed in the same background led to retention of the protein in ER-derived vesicles/compartments and its partial localization in protein storage vacuoles. Our data support the contention that the use of a C-terminal ER retention motif as an effective strategy to prevent or reduce complex N-glycan formation, is protein specific.  相似文献   

4.
Alcohol dehydrogenase was prepared from 2-day germinating maize and 3-day germinating broad-bean seeds by ammonium sulphate fractionation of sodium phosphate extracts, chromatography onDEAE cellulose and Sephadex G-200. The activity of the broad beanADH amounted to182 800 units per mg protein, that of maizeADH 79 000 units per mg protein. Besides oxidation of a series of alcohols at pH optimum in the alkaline region and with KM equalling 10-2M, alcohol dehydrogenases isolated from both plants catalyze the reduction of acetaldehyde, n-propanal, n-butanal, isobutanal and crotonal at pH optimum in the neutral region with KM equalling 10-3M. The inhibition studies using fatty acids and chloride ions revealed that the oxidation of alcohols is inhibited competitively by both types of inhibitors, with inhibition constants of 10-2M and 10-1M, respectively. The inhibition in the presence of acetaldehyde is non-competitive since the inhibitors do not compete with acetaldehyde and do not form an enzyme-NADH-inhibitor complex, yet they obviously react with the enzyme-NAD product only, thus giving rise to an enzyme-NAD-inhibitor complex. These differences in the behaviour of inhibitors may be interpreted in the sense that the binding sites of ethanol and acetaldehyde as substrates for broad bean and maize alcohol dehydrogenases are non equivalent. The nonequivalency discussed in the text.  相似文献   

5.
The Arabidopsis thaliana gene AtSgpp (locus tag At2g38740), encodes a protein whose sequence motifs and expected structure reveal that it belongs to the HAD hydrolases subfamily I, with the C1-type cap domain (Caparrós-Martín et al. in Planta 237:943–954, 2013). In the presence of Mg2+ ions, the enzyme has a phosphatase activity over a wide range of phosphosugar substrates. AtSgpp promiscuity is preferentially detectable on d-ribose-5-phosphate, 2-deoxy-d-ribose-5-phosphate, 2-deoxy-d-glucose-6-phosphate, d-mannose-6-phosphate, d-fructose-1-phosphate, d-glucose-6-phosphate, dl-glycerol-3-phosphate, and d-fructose-6-phosphate. Site-directed mutagenesis analysis of the putative signature sequence motif-5 (IAGKH), which defines its specific chemistry, brings to light the active-site residues Ala-69 and His-72. Mutation A69M, changes the pH dependence of AtSgpp catalysis, and mutant protein AtSgpp-H72K was inactive in phosphomonoester dephosphorylation. It was also observed that substitutions I68M and K71R slightly affect the substrate specificity, while the replacement of the entire motif for that of homologous dl-glycerol-3-phosphatase AtGpp (MMGRK) does not switch AtSgpp activity to the specific targeting for dl-glycerol-3-phosphate.  相似文献   

6.
N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan “bisection” and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266–4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the “bisecting” GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of “bisecting” GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of “bisected” oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.  相似文献   

7.

Key message

A platform of gene silencing by amiRNA had been established in fertile transgenic soybean. We demonstrated that knockdown of storage protein shifted the distribution of nitrogen sources in soybean seeds.

Abstract

Artificial microRNAs (amiRNAs) were designed using the precursor sequence of the endogenous soybean (Glycine max L. Merrill) miRNA gma-miR159a and expressed in transgenic soybean plants to suppress the biosynthesis of 7S globulin, which is one of the major storage proteins. Seed-specific expression of these amiRNAs (amiR-7S) resulted in a strong suppression of 7S globulin subunit genes and decreased accumulation of the 7S globulin subunits in seeds. Thus, the results demonstrate that a platform for gene silencing by amiRNA was first developed in fertile transgenic soybean plants. There was no difference in nitrogen, carbon, and lipid contents between amiR-7S and control seeds. Four protein fractions were collected from defatted mature seeds on the basis of solubility at different pH to examine the distribution of nitrogen sources and compensatory effects. In the whey and lipophilic fractions, nitrogen content was similar in amiR-7S and control seeds. Nitrogen content was significantly decreased in the major soluble protein fraction and increased in the residual fraction (okara) of the amiR-7S seeds. Amino acid analysis revealed that increased nitrogen compounds in okara were proteins or peptides rather than free amino acids. Our study indicates that the decrease in 7S globulin subunits shifts the distribution of nitrogen sources to okara in transgenic soybean seeds.  相似文献   

8.
In eukaryotes, class I α-mannosidases are involved in early N-glycan processing reactions and in N-glycan–dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type α-mannosidase I (MNS3) and the two Golgi-α-mannosidase I proteins (MNS1 and MNS2) from Arabidopsis thaliana. All three MNS proteins were found to localize in punctate mobile structures reminiscent of Golgi bodies. Recombinant forms of the MNS proteins were able to process oligomannosidic N-glycans. While MNS3 efficiently cleaved off one selected α1,2-mannose residue from Man9GlcNAc2, MNS1/2 readily removed three α1,2-mannose residues from Man8GlcNAc2. Mutation in the MNS genes resulted in the formation of aberrant N-glycans in the mns3 single mutant and Man8GlcNAc2 accumulation in the mns1 mns2 double mutant. N-glycan analysis in the mns triple mutant revealed the almost exclusive presence of Man9GlcNAc2, demonstrating that these three MNS proteins play a key role in N-glycan processing. The mns triple mutants displayed short, radially swollen roots and altered cell walls. Pharmacological inhibition of class I α-mannosidases in wild-type seedlings resulted in a similar root phenotype. These findings show that class I α-mannosidases are essential for early N-glycan processing and play a role in root development and cell wall biosynthesis in Arabidopsis.N-glycosylation is a major co- and posttranslational modification of proteins in eukaryotic cells. The biosynthesis of protein N-linked glycans starts in the endoplasmic reticulum (ER) when the oligosaccharyltransferase complex catalyzes the transfer of the Glc3Man9GlcNAc2 oligosaccharide from the lipid-linked precursor to Asn residues (N-X-S/T) of nascent polypeptide chains. Subsequent N-glycan processing involves a series of highly coordinated step-by-step enzymatic conversions occurring in the ER and Golgi apparatus (Kornfeld and Kornfeld, 1985). In the first trimming reactions, α-glucosidases I (GCSI) and GCSII cleave off three glucose residues from Glc3Man9GlcNAc2 to generate Man9GlcNAc2 (Figure 1A). The next steps of the pathway are the removal of four α1,2-linked mannose residues to provide the Man5GlcNAc2 substrate for the formation of complex N-glycans in the Golgi apparatus. In mammals, these mannose trimming reactions are catalyzed by class I α-mannosidases (glycosyl hydrolase family 47 of the Carbohydrate Active Enzymes database; http://www.cazy.org/). These enzymes are inverting glycosyl hydrolases that are highly specific for α1,2-mannose residues, require Ca2+ for catalytic activity, and are sensitive to inhibition by pyranose analogs such as 1-deoxymannojirimycin and kifunensine (Lipari et al., 1995; Gonzalez et al., 1999). Class I α-mannosidases are conserved through eukaryotic evolution and do not share sequence homology with class II α-mannosidases, such as Golgi α-mannosidase II and the catabolic lysosomal and cytoplasmic α-mannosidases (Gonzalez et al., 1999; Herscovics, 2001).Open in a separate windowFigure 1.Cartoon of Important Oligosaccharide Structures.(A) Man9GlcNAc2 oligosaccharide (Man9): the substrate for ER-MNSI.(B) Man8GlcNAc2 isomer Man8.1 according to Tomiya et al. (1991): the product of ER-MNSI and substrate for Golgi-MNSI.(C) Man5GlcNAc2 (Man5.1): the product of the mannose trimming reactions.The linkage of the sugar residues is indicated.[See online article for color version of this figure.]The mammalian class I α-mannosidase family consists of three protein subgroups, which have been distinguished based on their sequence similarity and proposed function: ER-α1,2-mannosidases I (ER-MNSIs), Golgi-α-mannosidases I (Golgi-MNSIs), and ER degradation-enhancing α-mannosidase (EDEM)-like proteins (Mast and Moremen, 2006). In humans, there is a single ER-MNSI, which cleaves the terminal mannose residue from the b-branch of the Man9GlcNAc2 oligosaccharide to create the Man8GlcNAc2 isomer Man8.1 (Figure 1B). Subsequently, Golgi-MNSI (three isoforms, Golgi-MNSIA, Golgi-MNSIB, and Golgi-MNSIC, are present in humans) catalyze the removal of the remaining three α1,2-linked mannose residues to generate Man5GlcNAc2 (Figure 1C). The three human EDEM proteins are not directly involved in N-glycan processing but play a role in ER-associated degradation of glycoproteins (Mast et al., 2005; Hirao et al., 2006; Olivari et al., 2006).The formation of the Man8GlcNAc2 isomer (Man8.1), which is catalyzed by ER-MNSI, is the last N-glycan processing step that is conserved in yeast and mammals. Apart from its N-glycan processing function, ER-MNSI plays a key role in ER-mediated quality control of glycoproteins in yeasts and mammals (Mast and Moremen, 2006; Lederkremer, 2009). It has been proposed that ER-MNSI cooperates with mammalian EDEM1 to 3 or the yeast α1,2-mannosidase HTM1 to generate the signal that marks misfolded glycoproteins for degradation through the ER-associated protein degradation (ERAD) pathway. This quality control process, which finally leads to retrotranslocation to the cytoplasm and hydrolysis by the 26S proteasome, serves to prevent the secretion of aberrantly folded cargo proteins and is required to maintain protein homeostasis in the ER. Initially it was proposed that the Man8GlcNAc2 isomer Man8.1 (Figure 1B) flags aberrantly folded glycoproteins for degradation; however, recent evidence suggests that further mannose trimming to Man7GlcNAc2 in yeast and Man5-6GlcNAc2 in mammals is required to trigger ERAD (Avezov et al., 2008; Clerc et al., 2009). In addition, these mannose cleavage reactions serve also to release glycoproteins from the calnexin/calreticulin quality control cycle (Caramelo and Parodi, 2008).Unlike for animals and yeast, much less is known about the biological function of plant class I α-mannosidases. Processing mannosidases have been purified and characterized from mung bean (Vigna radiata) seedlings and castor bean (Ricinus communis) cotyledons (Forsee, 1985; Szumilo et al., 1986; Kimura et al., 1991). These preparations were a mixture of different α-mannosidases, and no evidence for ER-MNSI-like activity was provided. A putative Golgi-α-mannosidase I has been cloned from soybean (Glycine max) (Nebenführ et al., 1999). A green fluorescent protein (GFP)-tagged fusion protein of the soybean enzyme has been shown to reside in the cis-stacks of the Golgi apparatus (Nebenführ et al., 1999; Saint-Jore-Dupas et al., 2006), but its role in N-glycan processing and its enzymatic properties have not been reported so far. Thus, the involvement of class I α-mannosidases in N-glycan processing as well as in glycoprotein quality control in plants is still unclear, and the existence of a plant ER-MNSI has so far been inferred only from the presence of Man8GlcNAc2 oligosaccharides on ER-resident glycoproteins (Pagny et al., 2000).Here, we report the molecular cloning and biochemical characterization of the enzymes accounting for ER-MNSI and Golgi-MNSI activities in Arabidopsis thaliana. We also demonstrate that disruption of these genes leads to severe cell expansion defects in roots as well as to distinct cell wall alterations. Hence, the identification of the Arabidopsis ER-type and Golgi class I α-mannosidases not only establishes the molecular basis for the missing steps in the plant N-glycan processing pathway but also provides unprecedented insights into the role of N-glycans in plant development.  相似文献   

9.
Maarten J. Chrispeels 《Planta》1983,158(2):140-151
When developing cotyledons of Phaseolus vulgaris L. were labeled with [3H]fucose, fucose-labeled phytohemagglutinin (PHA) was found in organelles with average densities of 1.13 g cm-3 and 1.22 g cm-3. The position of these organelles on isopycnic sucrose gradients was independent of the presence of MgCl2 and ethylenediaminetetraacetate in the media, indicating that the fucose-labeled PHA was not associated with the rough endoplasmic reticulum (ER). The organelles with a density of 1.13 g cm-3 were identified as membranes of the Golgi apparatus on the basis of the similarity of their sedimentation properties and those of the Golgi marker enzyme, inosine diphosphatase, in both isopycnic and rate-zonal sucrose gradients. The organelles with a density of 1.22 g cm-3 were identified as small (0.1–0.4 μm), electron-dense vesicles with a protein content similar to that of the protein bodies. Pulsechase experiments with [3H]fucose indicated that fucose-labeled PHA first appeared in the Golgi-apparatus-derived membranes and later in the dense vesicles. Fucose-labeled PHA chased out of the Golgi apparatus first, then out of the dense vesicles, and accumulated in the soluble portion of the homogenate which contained the contents of the broken protein bodies. Fucose-labeled PHA chased out of the two types of organelles with a t 1/2 of 20–30 min, a rate three to four times faster than newly synthesized PHA chases out of the bulk of the ER (Chrispeels, M.J., Bollini, R., 1982, Plant Physiol. 70, 1425–1428). This result indicates that the Golgi apparatus is a much smaller compartment than the ER in the storage parenchyma cells. The sodium ionophore, monensin, which interferes with the function of the Golgi apparatus of animal cells, blocks the biosynthesis and—or transport of fucose- and galactose-labeled macromolecules to the cotyledon cell walls. Monensin also blocks the transport of labeled PHA out of the Golgi apparatus and into the protein bodies. These results provide the first biochemical evidence that a specific storage protein which accumulates in seeds is modified in, and passes through, the Golgi apparatus on its way to the protein bodies.  相似文献   

10.
Many plant species contain a seed-specific tonoplast intrinsic protein (TIP) in their protein storage vacuoles (PSVs). Although the function of the protein is not known, its structure implies it to act as a transporter protein, possibly during storage nutrient accumulation/breakdown or during desiccation/imbibition of seeds. As mature somatic embryos of Picea abies (L.) Karst. (Norway spruce) contain PSVs, we examined the presence of TIP in them. Both the megagametophyte and seed embryo accumulate storage nutrients, but at different times and we therefore studied the temporal accumulation of TIP during seed development. Antiserum against the seed-specific a-TIP of Phaseolus vulgaris recognized an abundant 27 kDa tonoplast protein in mature seeds of P. abies. By immunogold labeling of sectioned mature megagametophytes we localized the protein to the PSV membrane. We also isolated the membranes of the PSVs from mature seeds and purified an integral membrane protein that reacted heavily with the antiserum. A sequence of 11 amino acid residues [AEEATHPDSIR], that was obtained from a polypeptide after in-gel trypsin digestion of the purified membrane protein, showed high local identity to a-TIP of Arabidopsis thaliana and to a-TIP of P. vulgaris. The greatest accumulation of TIP in the megagametophytes occurred at the time of storage protein accumulation. A lower molecular mass band also stained from about the time of fertilization until early embryo development. The staining of this band disappeared as the higher molecular mass (27 kDa) band accumulated in the megagametophyte during seed development. Total protein was also extracted from developing zygotic embryos and from somatic embryos. In zygotic embryos low-levels of TIP were seen at all stages investigated, but stained most at the time of storage protein accumulation. The protein was also present in mature somatic embryos but not in proliferating embryogenic tissues in culture. In addition to the seed tissue material, the antiserum also reacted with proteins present in extracts from roots and hypocotyls but not cotyledons from 13-day-old seedlings.  相似文献   

11.
Transgenic plants are attractive biological systems for the large-scale production of pharmaceutical proteins. In particular, seeds offer special advantages, such as ease of handling and long-term stable storage. Nevertheless, most of the studies of the expression of antibodies in plants have been performed in leaves. We report the expression of a secreted (sec-Ab) or KDEL-tagged (Ab-KDEL) mutant of the 14D9 monoclonal antibody in transgenic tobacco leaves and seeds. Although the KDEL sequence has little effect on the accumulation of the antibody in leaves, it leads to a higher antibody yield in seeds. sec-Ab(Leaf) purified from leaf contains complex N-glycans, including Lewis(a) epitopes, as typically found in extracellular glycoproteins. In contrast, Ab-KDEL(Leaf) bears only high-mannose-type oligosaccharides (mostly Man 7 and 8) consistent with an efficient endoplasmic reticulum (ER) retention/cis-Golgi retrieval of the antibody. sec-Ab and Ab-KDEL gamma chains purified from seeds are cleaved by proteases and contain complex N-glycans indicating maturation in the late Golgi compartments. Consistent with glycosylation of the protein, Ab-KDEL(Seed) was partially secreted and sorted to protein storage vacuoles (PSVs) in seeds and not found in the ER. This dual targeting may be due to KDEL-mediated targeting to the PSV and to a partial saturation of the vacuolar sorting machinery. Taken together, our results reveal important differences in the ER retention and vacuolar sorting machinery between leaves and seeds. In addition, we demonstrate that a plant-made antibody with triantennary high-mannose-type N-glycans has similar Fab functionality to its counterpart with biantennary complex N-glycans, but the former antibody interacts with protein A in a stronger manner and is more immunogenic than the latter. Such differences could be related to a variable immunoglobulin G (IgG)-Fc folding that would depend on the size of the N-glycan.  相似文献   

12.
We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma.Animals, fungi, and plants synthesize Asn-linked glycans (N-glycans) by means of a lipid-linked precursor containing 14 sugars (dolichol-PP-Glc3Man9GlcNAc2) (26). Recently we used bioinformatics and experimental methods to show that numerous protists are missing sets of glycosyltransferases (Alg1 to Alg14) and so make truncated N-glycan precursors containing 0 to 11 sugars (46). For example, Entamoeba histolytica, which causes dysentery, makes N-glycan precursors that contain seven sugars (Man5GlcNAc2) (33). Giardia lamblia, a cause of diarrhea, makes N-glycan precursors that contain just GlcNAc2 (41). N-glycan precursors may be identified by metabolic labeling with radiolabeled mannose (Entamoeba) or glucosamine (Giardia) (46). Unprocessed N-glycans of each protist may be recognized by wheat germ agglutinin 1 (WGA-1) (GlcNAc2 of Giardia) or by the antiretroviral lectin cyanovirin-N (Man5GlcNAc2 of Entamoeba) (2, 33, 41).N-glycans are transferred from lipid-linked precursors to sequons (Asn-Xaa-Ser or Asn-Xaa-Thr, where Xaa cannot be Pro) on nascent peptides by an oligosaccharyltransferase (OST) (28). For the most part, transfer of N-glycans by the OST is during translocation, although there are human and Trypanosoma OSTs that transfer N-glycans after translocation (34, 45).N-glycan-dependent quality control (QC) systems for protein folding and endoplasmic reticulum (ER)-associated degradation (ERAD), which are present in most eukaryotes, are missing from Giardia and a few other protists that make truncated N-glycans (5, 26, 53). There is positive Darwinian selection for sequons (sites of N-glycans) that contain Thr in secreted and membrane proteins of organisms that have N-glycan-dependent QC (12). This selection occurs for the most part by an increased probability that Asn and Thr will be present in sequons rather than elsewhere in secreted and membrane proteins. In contrast, there is no selection on sequons that contain Ser, and there is no selection on sequons in the secreted proteins of organisms that lack N-glycan-dependent QC.For numerous reasons, we are interested in the N-glycans of Plasmodium falciparum and Toxoplasma gondii, which cause severe malaria and disseminated infections, respectively.(i) There has been controversy for a long time as to whether Plasmodium makes N-glycans. While some investigators identified a 14-sugar Plasmodium N-glycan resembling that of the human host (29), others identified no N-glycans (6, 22).(ii) There is also controversy concerning whether the N-glycans of Toxoplasma, after removal of Glc by glucosidases in the ER lumen, contain either 7 sugars (Man5GlcNAc2), like Entamoeba (32, 33), or 11 sugars (Man9GlcNAc2), like the human host (16, 19, 26). If it is Man5GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan predicted by its set of Alg enzymes (32, 46). If it is Man9GlcNAc2, then Toxoplasma uses the dolichol-PP-linked glycan of the host cell (16, 19, 26).(iii) Both Plasmodium and Toxoplasma are missing proteins involved in N-glycan-dependent QC of protein folding (5).(iv) We hypothesize that there may be negative selection against N-glycans in Plasmodium and Toxoplasma, because the N-glycans added in the ER lumen during translocation will likely interfere with threading of nucleus-encoded apicoplast proteins into a nonphotosynthetic, chloroplast-derived organelle called the apicoplast (21, 35, 37, 48, 52, 54). Nucleus-encoded apicoplast proteins have a bipartite signal at the N terminus, which targets proteins first to the lumen of the ER and second to lumen of the apicoplast. This bipartite signal has been used in transformed plasmodia where green fluorescent protein (GFP) is targeted to the apicoplast with the bipartite signal of the acyl carrier protein (ACPleader-GFP), to the secretory system with the signal sequence only (ACPsignal-GFP), and to the cytosol with the organelle-targeting transit peptide only (ACPtransit-GFP) (55). Similar constructs have been used to characterize signals that target nucleus-encoded proteins of Toxoplasma to the apicoplast (11, 25).Here we use a combination of bioinformatic, biochemical, and morphological methods to characterize the N-glycans of Plasmodium and Toxoplasma and to test our hypothesis that there is negative selection against N-glycans in protists with apicoplasts.  相似文献   

13.

Main conclusion

Comprehensive subcellular localization analysis revealed that the subcellular distribution of carbohydrate metabolic pathways in the red alga Cyanidioschyzon is essentially identical with that in Arabidopsis , except the lack of transaldolase. In plants, the glycolysis and oxidative pentose phosphate pathways (oxPPP) are located in both cytosol and plastids. However, in algae, particularly red algae, the subcellular localization of enzymes involved in carbon metabolism is unclear. Here, we identified and examined the localization of enzymes related to glycolysis, oxPPP, and tricarboxylic acid (TCA) and Calvin–Benson cycles in the red alga Cyanidioschyzon merolae. A gene encoding transaldolase of the oxPPP was not found in the C. merolae genome, and no transaldolase activity was detected in cellular extracts. The subcellular localization of 65 carbon metabolic enzymes tagged with green fluorescent protein or hemagglutinin was examined in C. merolae cells. As expected, TCA and Calvin–Benson cycle enzymes were localized to mitochondria and plastids, respectively. The analyses also revealed that the cytosol contains the entire glycolytic pathway and partial oxPPP, whereas the plastid contains a partial glycolytic pathway and complete oxPPP, with the exception of transaldolase. Together, these results suggest that the subcellular distribution of carbohydrate metabolic pathways in C. merolae is essentially identical with that reported in the photosynthetic tissue of Arabidopsis thaliana; however, it appears that substrates typically utilized by transaldolase are consumed by glycolytic enzymes in the plastidic oxPPP of C. merolae.  相似文献   

14.

Key message

Wheat low-molecular-weight-glutenin and α-gliadin were accumulated in the endoplasmic reticulum and formed protein body-like structures in tobacco cells, with the participation of BiP chaperone. Possible interactions between these prolamins were investigated.

Abstract

Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas previous studies have been carried out to determine the atypical trafficking pathway of prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-glutenin) and α-gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-glutenin and α-gliadin were retained in the ER and formed mobile protein body-like structures (PBLS) that generally do not co-localise with Golgi bodies. An increased expression level of BiP in tobacco cells transformed with α-gliadin or LMW-glutenin was observed, suggesting the participation of this chaperone protein in the accumulation of wheat prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was retained longer in the ER before being exported to and degraded in the vacuole, compared with α-gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and LMW-glutenin were found in the same PBLS with no particular distribution, which could be due to their ability to interact with each other as indicated by yeast two-hybrid assays.  相似文献   

15.
The mechanism of the condensation of dilute aqueous solutions of HCN and the products formed by these reactions have been investigated. The initial HCN condensation reactions yield3, a compound which is readily oxidized to4. A similar oxidation of5 to6 was also observed. Urea is formed on hydrolysis of4. The oxidation-reduction products formed from HCN may be in part a consequence of the oxidation of3. It has been established by combination GC/MS that the amino acids glycine, diaminosuccinic acid, α-amino-isobutyric acid, aspartic acid, alanine and isoleucine are released on acid hydrolysis of the ‘HCN polymer’. Hydantoin (7), 5,5-dimethylhydantoin (8) and 5-carboxymethyldenehydantoin (10) are also released on acid hydrolysis of the HCN condensation products. The direct conversion of the dicarbonyl derivative, of diaminosuccinic acid to orotic acid via10 at pH 8 has been observed. This conversion suggests a direct route to pyrimidines from HCN.  相似文献   

16.
17.
Redirecting the tropism of viral vectors enables specific transduction of selected cells by direct administration of vectors. We previously developed targeting lentiviral vectors by pseudotyping with modified Sindbis virus envelope proteins. These modified Sindbis virus envelope proteins have mutations in their original receptor-binding regions to eliminate their natural tropisms, and they are conjugated with targeting proteins, including antibodies and peptides, to confer their tropisms on target cells. We investigated whether our targeting vectors interact with DC-SIGN, which traps many types of viruses and gene therapy vectors by binding to the N-glycans of their envelope proteins. We found that these vectors do not interact with DC-SIGN. When these vectors were produced in the presence of deoxymannojirimycin, which alters the structures of N-glycans from complex to high mannose, these vectors used DC-SIGN as their receptor. Genetic analysis demonstrated that the N-glycans at E2 amino acid (aa) 196 and E1 aa 139 mediate binding to DC-SIGN, which supports the results of a previous report of cryoelectron microscopy analysis. In addition, we investigated whether modification of the N-glycan structures could activate serum complement activity, possibly by the lectin pathway of complement activation. DC-SIGN-targeted transduction occurs in the presence of human serum complement, demonstrating that high-mannose structure N-glycans of the envelope proteins do not activate human serum complement. These results indicate that the strategy of redirecting viral vectors according to alterations of their N-glycan structures would enable the vectors to target specific cells types expressing particular types of lectins.The ultimate goal of gene therapy is cell- and tissue-specific targeted delivery of therapeutic genes. A targeted system increases the therapeutic effects of transgenes at the site of action while reducing adverse effects in surrounding cells and tissues that commonly occur through nonspecific modes of gene delivery (5-8). Gene therapy vectors that can home to specific cells and tissues after intravenous administration, also known as targeting vectors, are ideal for targeted delivery (62). In the past, many attempts have been made to develop targeting viral vectors by using adenovirus, adeno-associated virus, oncoretrovirus, lentivirus, measles virus, and alphavirus (70, 89).To create targeting viral vectors, the natural tropisms of the viruses must first be eliminated and new binding specificities conferred (89). The binding of envelope viruses, such as oncoretrovirus, lentivirus, measles virus, and alphavirus, is mediated by envelope proteins. To redirect the tropisms of these viruses, the original receptor-binding regions of their envelope proteins must be eliminated. We have developed targeting oncoretroviral and lentiviral vectors by pseudotyping them with modified Sindbis virus envelope proteins and by mutating the receptor-binding regions of the envelope proteins, thereby reducing the nonspecific transduction of untargeted cells (61, 63-66). The mutated regions of the envelope protein originally interact directly with other receptors, including heparan sulfate, laminin receptor, and/or unknown molecules (10, 46, 67, 90). These mutations reduced the nonspecific transduction of the liver and spleen when the vectors were administered intravenously (66). By conjugating the virus with targeting ligands, including antibodies and peptides, the virus can transduce specific cells and tissues both in vitro and in vivo (53, 61, 63-66, 71, 72). These results demonstrated that we can eliminate the natural tropism of the Sindbis virus envelope protein while maintaining its fusion activity.However, the N-glycans of the envelope proteins are still intact and possibly interact with cell surface lectins. DC-SIGN is the best-known cell surface lectin expressed on dendritic cells, certain macrophages, and activated B cells (27, 29, 30).Structural and biochemical studies show flexible modes of DC-SIGN binding to cognate saccharides. The trimannose core unit of high-mannose N-glycans is the primary binding site for DC-SIGN (23), while nonreducing alpha1-2-linked terminal mannose moieties contribute to the high avidity seen when DC-SIGN binds the Man8 or Man9 structures common to many viral envelope glycoproteins (22). DC-SIGN traps a wide variety of viruses and viral vectors (HIV [29, 30], simian immunodeficiency virus [50], human T-cell leukemia virus type 1 [12], measles virus [17, 18], dengue virus [86], feline corona virus [77], herpes simplex virus type 1 [16], human cytomegalovirus [36], human herpesvirus type 8 [76], Ebola virus [1], West Nile virus [15], influenza virus [91], Marburg virus [57], and severe acute respiratory syndrome virus [93]) by binding to the N-glycans of the viruses and viral vectors. Binding of DC-SIGN with virus and viral vectors results in enhanced infection and/or transduction of DC-SIGN-positive cells (cis infection/transduction) and/or neighboring cells (trans infection/transduction).If any targeting vector can be trapped by DC-SIGN, it is necessary to eliminate its binding to DC-SIGN to increase the targeting specificity of the virus in vivo (28, 49, 73). In addition to enhanced infection/transduction, binding to DC-SIGN causes signaling that can activate DC-SIGN-expressing antigen-presenting cells (32, 38). Activation of antigen-presenting cells can lead to adverse effects, including systemic inflammation and immune reactions to viral vectors and their transgene products (7, 8, 32, 59, 88). Therefore, investigation of the interactions between viral vectors and DC-SIGN, identification of N-glycans that mediate binding to DC-SIGN, and elimination of interactions with DC-SIGN are important aspects of reducing adverse effects of vector administration and prolonging transgene expression.The envelope protein of our targeting lentiviral vectors, the Sindbis virus envelope protein, contains four N-linked glycans (9, 48). Sindbis virus can replicate in insect and mammalian cells, which have different types of enzymes to process N-glycans (3). Therefore, the structures of N-glycans differ between the virus produced in insect cells and that produced in mammalian cells (40, 58). The N-glycans of the virus produced in insect cells have either the high-mannose or the paucimannosidic structure. Paucimannosidic structure N-glycans, as well as high-mannose structure N-glycans, have terminal mannose residues, and all N-glycans produced in insect cells are predicted to be able to bind DC-SIGN (Fig. (Fig.11 a) (39, 47). On the other hand, two N-glycans of the virus produced in mammalian cells have the high-mannose structure, while two others have the complex structure (40, 58). The two complex structure N-glycans have been shown to be exposed on the surface of the envelope protein, while the two high-mannose structure N-glycans are buried within the center of the trimer of the envelope proteins (74, 94). Therefore, the virus produced in insect cells can access DC-SIGN as its receptor while the virus produced in mammalian cells cannot (47). Because our targeting vectors are produced in mammalian cells, they should not bind DC-SIGN efficiently. However, one group demonstrated that lentiviral vectors pseudotyped with a modified Sindbis virus envelope protein bind to DC-SIGN and target DC-SIGN-positive cells (92), in contrast to the results seen with replication-competent Sindbis virus. Both Sindbis virus and the pseudotyped lentiviral vectors were produced in mammalian cells; Sindbis virus was produced in baby hamster kidney (BHK) cells, chicken embryonic fibroblasts, and hamster fibroblast cells; and the pseudotyped vector was produced in human embryonic kidney fibroblast (293T) cells (69). Because it is known that the N-glycans of the HIV envelope protein produced in lymphocytes have structures different from those produced in macrophages, the different producer cells may account for the differences between the N-glycan structures of the virus and Sindbis virus envelope-pseudotyped lentivectors (54, 55). It is also known that the N-glycan structure of dengue virus can be altered by the presence of viral capsid (35). Thus, the capsid of Sindbis virus and HIV could also affect the structures of the N-glycans of envelope proteins differently.Open in a separate windowFIG. 1.(a) N-glycan structures and processing pathway. All N-glycans are first produced as the high-mannose structure in both mammalian cells and insect cells. In mammalian cells, certain N-glycans are further processed to the complex structure. In insect cells, certain N-glycans are further processed to the paucimannosidic structure. DMNJ inhibits mannosidase I, which is necessary for the formation of the complex structure; thus, all N-glycans have the high-mannose structure when generated in the presence of DMNJ. One representative structure of each N-glycan is shown. Man, mannose; GlcNAc, N-acetylglucosamine; SA, sialic acid; Gal, galactose. (b) Schematic representation of chimeric Sindbis virus envelope proteins. The Sindbis virus envelope protein is first synthesized as a polypeptide and subsequently cleaved by cellular proteases to generate the E3, E2, 6K, and E1 proteins. E1 and E2 are incorporated into the viral envelope, and E3 and 6K are leader sequences for E2 and E1, respectively. The N-linked glycosylation sites of the envelope proteins are shown. 2.2 is a modified Sindbis virus envelope protein in which the IgG-binding domain of protein A (ZZ) was inserted into the E2 region at aa 70. 2.2 1L1L has two flexible linkers (Gly-Gly-Gly-Gly-Ser) at aa 70 of the E2 protein. 2.2 ΔE2-196N does not have the N-glycan at E2 aa 196, 2.2 ΔE1-139N does not have the N-glycan at E1 aa 139, and 2.2 ΔE2-196N E1-139N does not have the N-glycans at either E2 aa 196 or E1 aa 139.In this study, we investigated whether our targeting vector binds DC-SIGN. We found that DC-SIGN does not mediate the transduction of our targeting vectors efficiently. The vectors can be redirected to DC-SIGN by modifying the structures of the N-glycans of the envelope proteins by using the mannosidase I inhibitor deoxymannojirimycin (DMNJ) (25, 47, 51).  相似文献   

18.
19.
The influence of geldanamycin (GA), a specific inhibitor of heat-shock protein Hsp90, on the synthesis of Hsp70 and Hsp90 and thermotolerance of Arabidopsis thaliana seedlings has been studied. Incubation of seedlings with GA under normal conditions induced synthesis of these stress proteins. Treatment of seeds with the Hsp90 inhibitor resulted in elevated constitutive levels of Hsp70 and Hsp90 in seedlings, as well as increased induction of their synthesis under heat shock. The GA effect increased with its concentration. Hsp up-regulation promoted thermotolerance of seedlings. The findings suggest autoregulation of heatshock protein synthesis and regulation of plant tolerance by Hsp90.  相似文献   

20.
Very long chain fatty acids (VLCFAs) are essential lipid components in many plants. 3-Ketoacyl-CoA synthase (KCS) catalyzes the condensation reaction to form 3-ketoacyl-CoA in VLCFA synthesis. AtELO4 has been reported to be involved in VLCFA synthesis, functioning as a KCS in Arabidopsis. However, no studies on other three AtELO members have been reported. Here, we initially found by real-time PCR in Arabidopsis thaliana (L.) Heynh. that AtELO1, AtELO3, and AtELO4 displayed characteristic expression patterns, but AtELO2 was nearly expressed in any organ. Then the transient expression of ELO-like-eGFP fusions in Arabidopsis green leaf protoplasts showed that AtELO1, AtELO3, and AtELO4 were localized in the endoplasmic reticulum (ER), where VLCFA synthesis took place. Finally, we found that the contents of all fatty acids were decreased by 10–20% in seeds of atelo1 T-DNA insertion mutants. In seeds of Pro35S:AtELO1 plants, the levels of all remaining components, except C20:0 and C20:3, were significantly increased. Taken together, our study revealed biological functions of AtELO members and might lay the foundation for further genetic manipulations to generate oil crops with the high oil content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号