首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chemotactic signaling in filamentous cells of Escherichia coli.   总被引:18,自引:10,他引:8       下载免费PDF全文
Video techniques were used to record chemotactic responses of filamentous cells of Escherichia coli stimulated iontophoretically with aspartate. Long, nonseptate cells were produced from polyhook strains either by introducing a cell division mutation or by growth in the presence of cephalexin. Markers indicating rotation of flagellar motors were attached with anti-hook antibodies. Aspartate was applied by iontophoretic ejection from a micropipette, and the effects on the direction of rotation of the markers were measured. Motors near the pipette responded, whereas those sufficiently far away did not, even when the pipette was near the cell surface. The response of a given motor decreased as the pipette was moved away, but it did so less steeply when the pipette remained near the cell surface than when it was moved out into the external medium. This shows that there is an internal signal, but its range is short, only a few micrometers. These experiments rule out signaling by changes in membrane potential, by simple release or binding of a small molecule, or by diffusion of the receptor-attractant complex. A likely candidate for the signal is a protein or ligand that is activated by the receptor and inactivated as it diffuses through the cytoplasm. The range of the signal was found to be substantially longer in a cheZ mutant, suggesting that the product of the cheZ gene contributes to this inactivation.  相似文献   

2.
Reconstitution of signaling in bacterial chemotaxis.   总被引:55,自引:30,他引:25       下载免费PDF全文
Strains missing several genes required for chemotaxis toward amino acids, peptides, and certain sugars were tethered and their rotational behavior was analyzed. Null strains (called gutted) were deleted for genes that code for the transducers Tsr, Tar, Tap, and Trg and for the cytoplasmic proteins CheA, CheW, CheR, CheB, CheY, and CheZ. Motor switch components were wild type, flaAII(cheC), or flaBII(cheV). Gutted cells with wild-type motors spun exclusively counterclockwise, while those with mutant motors changed their directions of rotation. CheY reduced the bias (the fraction of time that cells spun counterclockwise) in either case. CheZ offset the effect of CheY to an extent that varied with switch allele but did not change the bias when tested alone. Transducers also increased the bias in the presence of CheY but not when tested alone. However, cells containing transducers and CheY failed to respond to attractants or repellents normally detected in the periplasm. This sensitivity was restored by addition of CheA and CheW. Thus, CheY both enhances clockwise rotation and couples the transducers to the flagella. CheZ acts, at the level of the motor, as a CheY antagonist. CheA or CheW or both are required to complete the signal pathway. A model is presented that explains these results and is consistent with other data found in the literature.  相似文献   

3.
An Escherichia coli cell transduces extracellular stimuli sensed by chemoreceptors to the state of an intracellular signal molecule, which regulates the switching of the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) and from CW back to CCW. Here, we performed high-speed imaging of flagellar motor rotation and show that the switching of two different motors on a cell is controlled coordinatedly by an intracellular signal protein, phosphorylated CheY (CheY-P). The switching is highly coordinated with a subsecond delay between motors in clear correlation with the distance of each motor from the chemoreceptor patch localized at a cell pole, which would be explained by the diffusive motion of CheY-P molecules in the cell. The coordinated switching becomes disordered by the expression of a constitutively active CheY mutant that mimics the CW-rotation stimulating function. The coordinated switching requires CheZ, which is the phosphatase for CheY-P. Our results suggest that a transient increase and decrease in the concentration of CheY-P caused by a spontaneous burst of its production by the chemoreceptor patch followed by its dephosphorylation by CheZ, which is probably a wavelike propagation in a subsecond timescale, triggers and regulates the coordinated switching of flagellar motors.  相似文献   

4.
Adaptation kinetics in bacterial chemotaxis.   总被引:24,自引:10,他引:14       下载免费PDF全文
Cells of Escherichia coli, tethered to glass by a single flagellum, were subjected to constant flow of a medium containing the attractant alpha-methyl-DL-aspartate. The concentration of this chemical was varied with a programmable mixing apparatus over a range spanning the dissociation constant of the chemoreceptor at rates comparable to those experienced by cells swimming in spatial gradients. When an exponentially increasing ramp was turned on (a ramp that increases the chemoreceptor occupancy linearly), the rotational bias of the cells (the fraction of time spent spinning counterclockwise) changed rapidly to a higher stable level, which persisted for the duration of the ramp. The change in bias increased with ramp rate, i.e., with the time rate of change of chemoreceptor occupancy. This behavior can be accounted for by a model for adaptation involving proportional control, in which the flagellar motors respond to an error signal proportional to the difference between the current occupancy and the occupancy averaged over the recent past. Distributions of clockwise and counterclockwise rotation intervals were found to be exponential. This result cannot be explained by a response regular model in which transitions between rotational states are generated by threshold crossings of a regular subject to statistical fluctuation; this mechanism generates distributions with far too many long events. However, the data can be fit by a model in which transitions between rotational states are governed by first-order rate constants. The error signal acts as a bias regulator, controlling the values of these constants.  相似文献   

5.
Using self-trapped Escherichia coli bacteria that have intact flagellar bundles on glass surfaces, we study statistical fluctuations of cell-body rotation in a steady (unstimulated) state. These fluctuations underline direction randomization of bacterial swimming trajectories and plays a fundamental role in bacterial chemotaxis. A parallel study is also conducted using a classical rotation assay in which cell-body rotation is driven by a single flagellar motor. These investigations allow us to draw the important conclusion that during periods of counterclockwise motor rotation, which contributes to a run, all flagellar motors are strongly correlated, but during the clockwise period, which contributes to a tumble, individual motors are uncorrelated in long times. Our observation is consistent with the physical picture that formation and maintenance of a coherent flagellar bundle is provided by a single dominant flagellum in the bundle.  相似文献   

6.
Flagellated bacteria, such as Escherichia coli, are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Chemotactic behavior has been studied under a variety of conditions, mostly at high loads (at large motor torques). Here, we examine motor switching at low loads. Nano-gold spheres of various sizes were attached to hooks (the flexible coupling at the base of the flagellar filament) of cells lacking flagellar filaments in media containing different concentrations of the viscous agent Ficoll. The speeds and directions of rotation of the spheres were measured. Contrary to the case at high loads, motor switching rates increased appreciably with load. Both the CW → CCW and CCW → CW switching rates increased linearly with motor torque. Evidently, the switch senses stator-rotor interactions as well as the CheY-P concentration.  相似文献   

7.
The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-driven polar flagellum (Pof) and the H(+)-driven lateral flagella (Laf), which are used for swimming in liquid and swarming over surfaces respectively. Here we show that both swimming and surface-swarming of V. alginolyticus involve chemotaxis and are regulated by a single CheY species. Some of the substitutions of CheY residues conserved in various bacteria have different effects on the Pof and Laf motors, implying that CheY interacts with the two motors differently. Furthermore, analyses of tethered cells revealed that their switching modes are different: the Laf motor rotates exclusively counterclockwise and is slowed down by CheY, whereas the Pof motor turns both counterclockwise and clockwise, and CheY controls its rotational direction.  相似文献   

8.
Transducers are transmembrane receptor proteins that generate intracellular signals on stimulation and participate in adaptation by appropriate changes in the level of methylation. The transducer mutation trg-21 conferred a Trg- phenotype and defective taxis to galactose and ribose but a normal response to other attractants when present in a single chromosomal copy. Amplification of trg-21 by a multicopy plasmid made host cells generally nonchemotactic. The dominant phenotype resulted from a strong counterclockwise rotational bias of flagellar motors in Che- cells. Apparently, the Trg21 transducer sends a continuous counterclockwise signal to flagella independent of tactic stimulation. It appears that the cell has a homeostatic capacity that is sufficient to compensate for the effect of mutant transducers produced from a single chromosomal copy of trg-21, but the capacity is exceeded in cells that have multiple copies of the gene. The Trg21 protein did not have a significant effect on methylesterase activity, indicating that the two global effects of a stimulated transducer, that is, on flagellar rotation and on modification enzymes, can occur independently. The mutant protein exhibited essentially normal turnover of methyl groups but had a drastic defect in deamidation which thus reduced the number of methyl-accepting sites. The trg-21 mutation substitutes a threonine for Ala-419. This alanine is a conserved residue in all sequenced transducers and is in a region of the carboxy-terminal domain in which homology among the transducers is very high. The Trg21 phenotype implicates this conserved region in the generation of the excitatory signal which is directed at the flagella.  相似文献   

9.
Three flagellar genes of Salmonella typhimurium (flaAII.2, flaQ, and flaN) were found to be multifunctional, each being associated with four distinct mutant phenotypes: nonflagellate (Fla-), paralyzed (Mot-), nonchemotactic (Che-) with clockwise motor bias, and nonchemotactic (Che-) with counterclockwise motor bias. The distribution of Fla, Mot, and Che mutational sites within each gene was examined. Fla sites were fairly broadly distributed, whereas Mot and Che sites were more narrowly defined. Local subregions rich in sites of one type were not generally rich in sites of another type. Among Che sites, there was little overlap between those corresponding to a clockwise bias and those corresponding to a counterclockwise bias. Our results suggest that within the corresponding gene products there are specialized subregions for flagellar structure, motor rotation, and control of the sense of rotation.  相似文献   

10.
Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.  相似文献   

11.
Escherichia coli mutants defective in cheY and cheZ function are motile but generally nonchemotactic; cheY mutants have an extreme counterclockwise bias in flagellar rotation, whereas cheZ mutants have a clockwise rotational bias. Chemotactic pseudorevertants of cheY and cheZ mutants were isolated on semisolid agar and examined for second-site suppressors in other chemotaxis-related loci. Approximately 15% of the cheZ revertants and over 95% of the cheY revertants contained compensatory mutations in the flaA or flaB locus. When transferred to an otherwise wild-type background, most of these suppressor mutations resulted in a generally nonchemotactic phenotype: suppressors of cheY caused a clockwise rotational bias; suppressors of cheZ produced a counterclockwise rotational bias. Chemotactic double mutants containing a che and a fla mutation invariably exhibited flagellar rotation patterns in between the opposing extremes characteristic of the component mutations. This additive effect on flagellar rotation resulted in essentially wild-type swimming behavior and is probably the major basis of suppressor action. However, suppression effects were also allele specific, suggesting that the cheY and cheZ gene products interact directly with the flaA and flaB products. These interactions may be instrumental in establishing the unstimulated swimming pattern of E. coli.  相似文献   

12.
Chemotaxis by cells of Escherichia coli and Salmonella typhimurium depends upon the ability of chemoreceptors called transducers to communicate with switch components of flagellar motors to modulate swimming behavior. This communication requires an excitatory pathway composed of the cytoplasmic signal transduction proteins, CheAL, CheAS, CheW, CheY, and CheZ. Of these, the autokinase CheAL is most central. Modifications or mutations that affect the rate at which CheAL autophosphorylates result in profound chemotactic defects. Here we demonstrate that pH can affect CheAL autokinase activity in vitro. This activity exhibits a bell-shaped dependence upon pH within the range 6.5 to 10.0, consistent with the notion that two proton dissociation events affect CheAL autophosphorylation kinetics: one characterized by a pKa of about 8.1 and another exhibiting a pKa of about 8.9. These in vitro results predict a decrease in the rate of CheAL autophosphorylation in response to a reduction in intracellular pH, a decrease that should cause increased counterclockwise flagellar rotation. We observed such a response in vivo for cells containing a partially reconstituted chemotaxis system. Benzoate (10 mM, pH 7.0), a weak acid that when undissociated readily traverses the cytoplasmic membrane, causes a reduction of cytoplasmic pH from 7.6 to 7.3. In response to this reduction, cells expressing CheAL, CheAS, and CheY, but not transducers, exhibited a small but reproducible increase in the fraction of time that they spun their flagellar motors counterclockwise. The added presence of CheW and the transducers Tar and Trg resulted in a more dramatic response. The significance of our in vitro results, their relationships to regulation of swimming behavior, and the mechanisms by which transducers might affect the pH dependence of CheA autokinase activity are discussed.  相似文献   

13.
The effect of CheY and fumarate on switching frequency and rotational bias of the bacterial flagellar motor was analyzed by computer-aided tracking of tethered Escherichia coli. Plots of cells overexpressing CheY in a gutted background showed a bell-shaped correlation curve of switching frequency and bias centering at about 50% clockwise rotation. Gutted cells (i.e., with cheA to cheZ deleted) with a low CheY level but a high cytoplasmic fumarate concentration displayed the same correlation of switching frequency and bias as cells overexpressing CheY at the wild-type fumarate level. Hence, a high fumarate level can phenotypically mimic CheY overexpression by simultaneously changing the switching frequency and the bias. A linear correlation of cytoplasmic fumarate concentration and clockwise rotation bias was found and predicts exclusively counterclockwise rotation without switching when fumarate is absent. This suggests that (i) fumarate is essential for clockwise rotation in vivo and (ii) any metabolically induced fluctuation of its cytoplasmic concentration will result in a transient change in bias and switching probability. A high fumarate level resulted in a dose-response curve linking bias and cytoplasmic CheY concentration that was offset but with a slope similar to that for a low fumarate level. It is concluded that fumarate and CheY act additively presumably at different reaction steps in the conformational transition of the switch complex from counterclockwise to clockwise motor rotation.  相似文献   

14.
Asynchronous switching of flagellar motors on a single bacterial cell   总被引:15,自引:0,他引:15  
R M Macnab  D P Han 《Cell》1983,32(1):109-117
Salmonella possesses several flagella, each capable of counterclockwise and clockwise rotation. Counterclockwise rotation produces swimming, clockwise rotation produces tumbling. Switching between senses occurs stochastically. The rotational sense of individual flagella on a single cell could be monitored under special conditions (partially de-energized cells of cheC and cheZ mutants). Switching was totally asynchronous, indicating that the stochastic process operates at the level of the individual organelle. Coordinated rotation in the flagellar bundle during swimming may therefore derive simply from a high counterclockwise probability enhanced by mechanical interactions, and not from a synchronizing switch mechanism. Different flagella on a given cell had different switching probabilities, on a time scale (greater than 2 min) spanning many switching events. This heterogeneity may reflect permanent structural differences, or slow fluctuations in some regulatory process.  相似文献   

15.
Many kinds of peritrichous bacteria that repeat runs and tumbles by using multiple flagella exhibit chemotaxis by sensing a difference in the concentration of the attractant or repellent between two adjacent time points. If a cell senses that the concentration of an attractant has increased, their flagellar motors decrease the switching frequency from counterclockwise to clockwise direction of rotation, which causes a longer run in swimming up the concentration gradient than swimming down. We investigated the turn angle in tumbles of peritrichous bacteria swimming across the concentration gradient of a chemoattractant because the change in the switching frequency in the rotational direction may affect the way tumbles. We tracked several hundreds of runs and tumbles of single cells of Salmonella enterica serovar Typhimurium in the concentration gradient of L-serine and found that the turn angle depends on the concentration gradient that the cell senses just before the tumble. The turn angle is biased toward a smaller value when the cells swim up the concentration gradient, whereas the distribution of the angle is almost uniform (random direction) when the cells swim down the gradient. The effect of the observed bias in the turn angle on the degree of chemotaxis was investigated by random walk simulation. In the concentration field where attractants diffuse concentrically from the point source, we found that this angular distribution clearly affects the reduction of the mean-square displacement of the cell that has started at the attractant source, that is, the bias in the turn angle distribution contributes to chemotaxis in peritrichous bacteria.  相似文献   

16.
M Nishiyama  Y Sowa 《Biophysical journal》2012,102(8):1872-1880
The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment.  相似文献   

17.
Flagella rotated exclusively counterclockwise in Escherichia coli cell envelopes prepared from wild-type cells, whose flagella rotated both clockwise and counterclockwise, from mutants rotating their flagella counterclockwise only, and even from mutants rotating their flagella primarily clockwise. Some factor needed for clockwise flagellar rotation appeared to be missing or defective in the cell envelopes.  相似文献   

18.
19.
A novel flagellatropic phage of Salmonella enterica serovar Typhimurium, called iEPS5, was isolated and characterized. iEPS5 has an icosahedral head and a long noncontractile tail with a tail fiber. Genome sequencing revealed a double-stranded DNA of 59,254 bp having 73 open reading frames (ORFs). To identify the receptor for iEPS5, Tn5 transposon insertion mutants of S. Typhimurium SL1344 that were resistant to the phage were isolated. All of the phage-resistant mutants were found to have mutations in genes involved in flagellar formation, suggesting that the flagellum is the adsorption target of this phage. Analysis of phage infection using the ΔmotA mutant, which is flagellated but nonmotile, demonstrated the requirement of flagellar rotation for iEPS5 infection. Further analysis of phage infection using the ΔcheY mutant revealed that iEPS5 could infect host bacteria only when the flagellum is rotating counterclockwise (CCW). These results suggested that the CCW-rotating flagellar filament is essential for phage adsorption and required for successful infection by iEPS5. In contrast to the well-studied flagellatropic phage Chi, iEPS5 cannot infect the ΔfliK mutant that makes a polyhook without a flagellar filament, suggesting that these two flagellatropic phages utilize different infection mechanisms. Here, we present evidence that iEPS5 injects its DNA into the flagellar filament for infection by assessing DNA transfer from SYBR gold-labeled iEPS5 to the host bacteria.  相似文献   

20.
Mutants of Escherichia coli and Salmonella typhimurium that were deficient in protein methylesterase activity encoded by cheB had an inverted response to oxygen; they were repelled by concentrations of oxygen that attract wild-type bacteria. Normal responses to oxygen and phosphotransferase substrates were observed in mutants that were deficient in protein methyltransferase (CheR) and the methyl-accepting transducing proteins (Tsr, Tar, Trg). However, the methylation-independent response to oxygen was modified by the loss of esterase activity. The inversion was apparently effected by the amidated Tsr protein present in cheB tsr+ mutants because aerotaxis was normal in cheB tsr strains. Chemotaxis to phosphotransferase sugars was normal in cheB mutants provided the extreme clockwise bias of the flagellar motors was modified to increase the probability of counterclockwise rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号