首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《The Journal of cell biology》1988,107(6):2563-2574
By direct counts off scanning electron micrographs, we determined the number of stereocilia per hair cell of the chicken cochlea as a function of the position of the hair cell on the cochlea. Micrographs of thin cross sections of stereociliary bundles located at known positions on the cochlea were enlarged and the total number of actin filaments per stereocilium was counted and recorded. By comparing the counts of filament number with measurements of actin filament bundle width of the same stereocilium, we were able to relate actin filament bundle width to filament number with an error margin (r2) of 16%. Combining this data with data already published or in the process of publication from our laboratory on the length and width of stereocilia, we were able to calculate the total length of actin filaments present in stereociliary bundles of hair cells located at a variety of positions on the cochlea. We found that stereociliary bundles of hair cells contain 80,000-98,000 micron of actin filament, i.e., the concentration of actin is constant in all hair cells with a range of values that is less than our error in measurement and/or biological variation, the greatest variation being in relating the diameters of the stereocilia to filament number. We also calculated the membrane surface needed to cover the stereocilia of hair cells located throughout the cochlea. The values (172-192 micron 2) are also constant. The implications of our observation that the total amount of actin is constant even though the length, width, and number of stereocilia per hair cell vary are discussed.  相似文献   

2.
Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.  相似文献   

3.
The espins are a family of multifunctional actin cytoskeletal proteins. They are present in hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction. Here, we demonstrate that the different espin isoforms are expressed in complex spatiotemporal patterns during inner ear development. Espin 3 isoforms were prevalent in the epithelium of the otic pit, otocyst and membranous labyrinth as they underwent morphogenesis. This espin was down-regulated ahead of hair cell differentiation and during neuroblast delamination. Espin also accumulated in the epithelium of branchial clefts and pharyngeal pouches and during branching morphogenesis in other embryonic epithelial tissues, suggesting general roles for espins in epithelial morphogenesis. Espin reappeared later in inner ear development in differentiating hair cells. Its levels and compartmentalization to stereocilia increased during the formation and maturation of stereociliary bundles. Late in embryonic development, espin was also present in a tail-like process that emanated from the hair cell base. Increases in the levels of espin 1 and espin 4 isoforms correlated with stereocilium elongation and maturation in the vestibular system and cochlea, respectively. Our results suggest that the different espin isoforms play specific roles in actin cytoskeletal regulation during epithelial morphogenesis and hair cell differentiation.  相似文献   

4.
A comparison of hair cells from different parts of the cochlea reveals the same organization of actin filaments; the elements that vary are the length and number of the filaments. Thin sections of stereocilia reveal that the actin filaments are hexagonally packed and from diffraction patterns of these sections we found that the actin filaments are aligned such that the crossover points of adjacent actin filaments are in register. As a result, the cross-bridges that connect adjacent actin filaments are easily seen in longitudinal sections. The cross-bridges appear as regularly spaced bands that are perpendicular to the axis of the stereocilium. Particularly interesting is that, unlike what one might predict, when a stereocilium is bent or displaced, as might occur during stimulation by sound, the actin filaments are not compressed or stretched but slide past one another so that the bridges become tilted relative to the long axis of the actin filament bundle. In the images of bent bundles, the bands of cross- bridges are then tilted off perpendicular to the stereocilium axis. When the stereocilium is bent at its base, all cross-bridges in the stereocilium are affected. Thus, resistance to bending or displacement must be property of the number of bridges present, which in turn is a function of the number of actin filaments present and their respective lengths. Since hair cells in different parts of the cochlea have stereocilia of different, yet predictable lengths and widths, this means that the force needed to displace the stereocilia of hair cells located at different regions of the cochlea will not be the same. This suggests that fine tuning of the hair cells must be a built-in property of the stereocilia. Perhaps its physiological vulnerability may result from changes of stereociliary structure.  相似文献   

5.
Lateral mechanical coupling of stereocilia in cochlear hair bundles   总被引:4,自引:0,他引:4       下载免费PDF全文
For understanding the gating process of transduction channels in the inner ear it is essential to characterize and examine the functional properties of the ultrastructure of stereociliary bundles. There is strong evidence that transduction channels in hair cells are gated by directly pulling at the so-called tip links. In addition to these tip links a second class of filamentous structures was identified in the scanning and transmission electron microscope: the side-to-side links. These links laterally connect stereocilia of the same row of a hair bundle. This study concentrates on mechanical coupling of stereocilia of the tallest row connected by side-to-side links. Atomic Force microscopy (AFM) was used to investigate hair bundles of outer hair cells (OHCs) from postnatal rats (day 4). Although hair bundles of postnatal rats are still immature at day 4 and interconnecting cross-links do not show preferential direction yet, hair bundles of investigated OHCs already showed the characteristic V-shape of mature hair cells. In a first experiment, the stiffness of stereocilia was investigated scanning individual stereocilia with an AFM tip. The spring constant for the excitatory direction was 2.5 +/- 0.6 x 10(-3) N/m whereas a higher spring constant (3.1 +/- 1.5 x 10(-3) N/m) was observed in the inhibitory direction. In a second set of experiments, the force transmission between stereocilia of the tallest row was measured using AFM in combination with a thin glass fiber. This fiber locally displaced a stereocilium while the force laterally transmitted to the neighboring untouched taller stereocilia was measured by AFM. The results show a weak force interaction between tallest stereocilia of postnatal rats. The force exerted to an individual stereocilium declines to 36% at the nearest adjacent stereocilium of the same row not touched with the fiber. It is suggested that the amount of force transmitted from a taller stereocilium to an adjacent one of the same row depends on the orientation of links. Maximum force transmission is expected to appear along the axis of interconnecting side links. In our studies it is suggested that transmitted forces are small because connecting side links are oriented very close to an angle of 90 degrees with respect of the scan direction (excitatory-inhibitory direction).  相似文献   

6.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

7.
We discuss theoretically the shape of actin-based protrusions such as stereocilia or microvilli that have important functions in many biological systems. These linear protrusions are dynamical structures continuously renewed by treadmilling: actin polymerizes at the tip of the cilium and depolymerizes in its bulk. They also often have a well-controlled length such as in the hair bundles of the inner ear cells where they appear in a graded staircase structure. Recent experimental results by another group of researchers show that the treadmilling velocity of the hair cell stereocilia is proportional to their length. We use generic arguments to describe the physics of stereocilia taking into account the effect of many individual proteins at a coarse-grained level by a few phenomenological parameters. At the tip of the cilium, we find that actin polymerization induces an effective pressure. Below the tip, the shape of the cilium is determined by depolymerization: Agreement with the observed shape requires that depolymerization occurs at least in two steps. Under these conditions, we calculate the cilium shape and provide physical grounds for the proportionality between treadmilling velocity and cilium length. We also calculate the penetration of the stereocilium in the actin cortical layer.  相似文献   

8.
Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.  相似文献   

9.
Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs) and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs) and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.  相似文献   

10.
The cell membranes in the hair bundle of an auditory hair cell confront a difficult task as the bundle oscillates in response to sound: for efficient mechanotransduction, all the component stereocilia of the hair bundle must move essentially in unison, shearing at their tips yet maintaining contact without membrane fusion. One mechanism by which this cohesion might occur is counterion-mediated attachment between glycan components of apposed stereociliary membranes. Using capillary electrophoresis, we showed that the stereociliary glycocalyx acts as a negatively charged polymer brush. We found by force-sensing photomicrometry that the stereocilia formed elastic connections with one another to various degrees depending on the surrounding ionic environment and the presence of N-linked sugars. Mg2+ was a more potent mediator of attachment than was Ca2+. The forces between stereocilia produced chaotic stick-slip behavior. These results indicate that counterion-mediated interactions in the glycocalyx contribute to the stereociliary coherence that is essential for hearing.  相似文献   

11.
Optimal insertion angle of mammalian stereocilia is estimated from the finite element analysis of the tip motion of outer hair cells (OHCs) stereocilia. The OHC stereocilia motion in the acousticolateral system appears to result in the mechanoelectrical transduction channels. Deflection of the hair bundle towards the tallest row of stereocilia causes increased probability of opening of ion channels. In this work, we focus on one of the physical features of the OHC stereocilium, the initial insertion angle of the tallest row into the tectorial membrane (TM), and its effects on the stereocilia's deflection motion. A three-dimensional model was built for the tallest stereocilium and the TM at the region where the best frequency was 500Hz. The mechanical interactions between the embedded stereocilia and the TM have been implemented into the finite element simulation. We found that, the optimum insertion angle of the tallest stereocilium into the TM was 69.8°, where the stereocilium is maximally deflected. This quantity is consistent with the histological observation obtained from the literature.  相似文献   

12.
Located on the sensory epithelium of the sickle-shaped cochlea of a 7- to 10-d-old chick are approximately 5,000 hair cells. When the apical surface of these cell is examined by scanning microscopy, we find that the length, number, width, and distribution of the stereocilia on each hair cell are predetermined. Thus, a hair cell located at the distal end of the cochlea has 50 stereocilia, the longest of which are 5.5 microns in length and 0.12 microns in width, while those at the proximal end number 300 and are maximally 1.5 microns in length and 0.2 micron in width. In fact, if we travel along the cochlea from its distal to proximal end, we see that the stereocilia on successive hair cells gradually increase in number and width, yet decrease in length. Also, if we look transversely across the cochlea where adjacent hair cells have the same length and number of stereocilia (they are the same distance from the distal end of the cochlea), we find that the stereocilia of successive hair cells become thinner and that the apical surface area of the hair cell proper, not including the stereocilia, decreases from a maximum of 80 microns2 to 15 microns2. Thus, if we are told the length of the longest stereocilium on a hair cell and the width of that stereocilium, we can pinpoint the position of that hair cell on the cochlea in two axes. Likewise, if we are told the number of stereocilia and the apical surface of a hair cell, we can pinpoint the location of that cell in two axes. The distribution of the stereocilia on the apical surface of the cell is also precisely determined. More specifically, the stereocilia are hexagonally packed and this hexagonal lattice is precisely positioned relative to the kinocilium. Because of the precision with which individual hair cells regulate the length, width, number, and distribution of their cell extensions, we have a magnificent object with which to ask questions about how actin filaments that are present within the cell are regulated. Equally interesting is that the gradient in stereociliary length, number, width, and distribution may play an important role in frequency discrimination in the cochlea. This conclusion is amplified by the information presented in the accompanying paper (Tilney, L.G., E.H. Egelman, D.J. DeRosier, and J.C. Saunders, 1983, J. Cell Biol., 96:822- 834) on the packing of actin filaments in this stereocilia.  相似文献   

13.
Stereocilia side links are directly involved in the maintenance of stereociliary bundle integrity in hair cells. The structure of the stereocilia side links and morphology of the auditory hair bundle in relation to noise exposure in the chinchilla was investigated by transmission electron microscopy. The outer hair cell (OHC) stereocilia side link was suggested to consist of extracellular, juxta-membrane and thin filamentous regions. Two beaded filaments were folded at their distal ends and fastened in one globule in the center between stereocilia. An intracellular, submembraneous layer appeared to form a bridge between the actin core and the extracellular, juxta-membrane region of the side link. In normal physiological conditions, most OHC stereocilia had a regular distribution of side links, forming a ‘zipper-like’ lattice between stereocilium shafts. Side links of the inner hair cell (IHC) stereocilia had a similar filamentous appearance, but were observed less commonly and had decreased structural organization compared to those of the OHC stereocilia. Ultrastructural analysis of OHC and IHC stereocilia showed that a large number of the side links could survive acoustic stimulation of 114 dB SPL for 2 hrs or 123 dB SPL for 15 min, that resulted in temporarily elevated hearing thresholds in all animals. Disarray, separation, close attachment and fusion of stereocilia were more frequently observed for IHC stereocilia and OHC stereocilia that were poorly connected or that lacked side links. Most disarrayed OHC and IHC stereocilia recovered to a normal erect state with restored orientation of the side links after 14–28 days, which correlated with near-complete recovery of auditory sensitivity. However, direct attachment of plasma membranes, ruptured links, fusion and blebs were seen on some stereocilia even after 28 days and appear to be permanent.  相似文献   

14.
In 8-day-old embryos stereocilia can be identified on the hair cells of the chick cochlea; within each is a small population of actin filaments which extend from the tip of the stereocilium to the apical cytoplasm of the cell. These filaments are not ordered in a regular way, however, and tend to be found near the lateral margins of the stereocilia with large spaces between adjacent filaments. By 9 days the spaces between adjacent filaments are reduced and there are regions where the crossover points of adjacent actin helices are in register even though in cross section the actin filaments do not lie on a regular lattice. By 10-11 days the actin filaments become progressively more crossbridged together and we can recognize in longitudinal section horizontal stripes caused by the periodicity of the crossbridges. In transverse section the filaments begin to lie on a hexagonal lattice. Each stereocilium, however, contains less than 100 actin filaments. Evidence is presented that once crossbridging is maximal and the filaments hexagonally packed (Days 11-12), the stereocilia increase in width by the orderly addition of actin filaments to the lateral margins of the existing filament bundle so that by Day 16 we find up to 400 filaments all packed on a hexagonal lattice. Thus there are two stages in bundle formation. In the first a small number of filaments condense into a hexagonally packed, crosslinked bundle. In the second, the bundle increases in diameter by addition of filaments to the periphery of the bundle in a process akin to crystal growth. From observations on the elongation of filaments in the rootlets and stereocilia, we conclude that rootlets grow by addition of subunits at the nonpreferred end while stereocilia elongate by addition to the preferred end. What makes this interesting is that these two modes of addition occur at different developmental times.  相似文献   

15.
Hearing and vestibular function depend on mechanosensory staircase collections of hair cell stereocilia, which are produced from microvillus-like precursors as their parallel actin bundle scaffolds increase in diameter and elongate or shorten. Hair cell stereocilia contain multiple classes of actin-bundling protein, but little is known about what each class contributes. To investigate the roles of the espin class of actin-bundling protein, we used a genetic approach that benefited from a judicious selection of mouse background strain and an examination of the effects of heterozygosity. A congenic jerker mouse line was prepared by repeated backcrossing into the inbred CBA/CaJ strain, which is known for excellent hearing and minimal age-related hearing loss. We compared stereocilia in wild-type CBA/CaJ mice, jerker homozygotes that lack espin proteins owing to a frameshift mutation in the espin gene, and jerker heterozygotes that contain reduced espin levels. The lack of espins radically impaired stereociliary morphogenesis, resulting in stereocilia that were abnormally thin and short, with reduced differential elongation to form a staircase. Mean stereociliary diameter did not increase beyond ~0.10-0.14 μm, making stereocilia ~30%-60% thinner than wild type and suggesting that they contained ~50%-85% fewer actin filaments. These characteristics indicate a requirement for espins in the appositional growth and differential elongation of the stereociliary parallel actin bundle and fit the known biological activities of espins in vitro and in transfected cells. The stereocilia of jerker heterozygotes showed a transient proximal-distal tapering suggestive of haploinsufficiency and a slowing of morphogenesis that revealed previously unrecognized assembly steps and intermediates. The lack of espins also led to a region-dependent degeneration of stereocilia involving shortening and collapse. We conclude that the espin actin-bundling proteins are required for the assembly and stabilization of the stereociliary parallel actin bundle.  相似文献   

16.
Within each tapering stereocilium of the cochlea of the alligator lizard is a bundle of actin filaments with > 3,000 filaments near the tip and only 18-29 filaments at the base where the bundle enters into the cuticular plate; there the filaments splay out as if on the surface of a cone, forming the rootlet. Decoration of the hair cells with subfragment 1 of myosin reveals that all the filaments in the stereocilia, including those that extend into the cuticular plate forming the rootlet, have unidirectional polarity, with the arrowheads pointing towards the cell center. The rest of the cuticular plate is composed of actin filaments that show random polarity, and numerous fine, 30 A filaments that connect the rootlet filaments to each other, to the cuticular plate, and to the membrane. A careful examination of the packing of the actin filaments in the stereocilia by thin sectin and by optical diffraction reveals that the filaments are packed in a paracrystalline array with the crossover points of all the actin helices in hear-perfect register. In transverse sections, the actin filaments are not hexagonally packed but, rather, are arranged in scalloped rows that present a festooned profile. We demonstrated that this profile is a product of the crossbridges by examining serial sections, sections of different thicknesses, and the same stereocilium at two different cutting angles. The filament packing is not altered by fixation in different media, removal of the limiting membrane by detergent extraction, or incubation of extracted hair cells in EGTA, EDTA, and Ca++ and ATP. From our results, we conclude that the stereocilia of the ear, unlike the brush border of intestinal epithelial cells, are not designed to shorten, nor do the filaments appear to slide past one another. In fact, the stereocilium is like a large, rigid structure designed to move as a lever.  相似文献   

17.
The espin actin-bundling proteins, which are the target of the jerker deafness mutation, caused a dramatic, concentration-dependent lengthening of LLC-PK1-CL4 cell microvilli and their parallel actin bundles. Espin level was also positively correlated with stereocilium length in hair cells. Villin, but not fascin or fimbrin, also produced noticeable lengthening. The espin COOH-terminal peptide, which contains the actin-bundling module, was necessary and sufficient for lengthening. Lengthening was blocked by 100 nM cytochalasin D. Espin cross-links slowed actin depolymerization in vitro less than twofold. Elimination of an actin monomer-binding WASP homology 2 domain and a profilin-binding proline-rich domain from espin did not decrease lengthening, but made it possible to demonstrate that actin incorporation was restricted to the microvillar tip and that bundles continued to undergo actin treadmilling at approximately 1.5 s-1 during and after lengthening. Thus, through relatively subtle effects on actin polymerization/depolymerization reactions in a treadmilling parallel actin bundle, espin cross-links cause pronounced barbed-end elongation and, thereby, make a longer bundle without joining shorter modules.  相似文献   

18.
The cochleae of chick embryos of 8 days of incubation until hatching (21 days) were examined by scanning electron microscopy. Unlike what one would expect from the literature, the total number of hair cells per cochlea (10,405 +/- 529) is already determined and visible in a 10-day embryo and the growth of the cochlea is a result of the growth in size and surface area of the hair cells. We also find that the hair cells differentiate simultaneously throughout the cochlea and have followed the differentiation of individual hair cells throughout development. During development we find that the total number, hexagonal packing, and orientation of the stereocilia in each hair cell is determined early and accurately (9- to 10-day embryos). The stereocilia then begin to elongate in all the cells of the cochlea at approximately 0.5 micron/day. By Day 12 the tallest stereocilia in each cell are 1.5-1.8 micron long, the mature length for cells at the proximal end of the cochlea. At this point all stereocilia cease elongating, but those along the inferior edge gradually increase in width from 0.11 micron to maximally 0.19 micron in 17-day embryos. When the stereocilia on the inferior edge reach their mature width, widening ceases and the elongation of stereocilia in the distal hair cells begins again. When these stereocilia have attained their mature lengths, they stop growing. Thus elongation and widening of stereocilia are separated in time. During this period, 11 to 13 days, the shape of the tufts at the proximal end of the cochlea changes. This occurs because stereocilia in the front of each tuft are absorbed while others at the sides appear de novo. This rearrangement converts a circular bundle of stereocilia to a rectangular bundle.  相似文献   

19.
The mechanosensitive hair cells of the inner ear are crucial to hearing and vestibular function. Each hair cell detects the mechanical stimuli associated with sound or head movement with a hair bundle at the apical surface of the cell, consisting of a precise array of actin‐based stereocilia. Each stereocilium inserts as a rootlet into a dense filamentous actin mesh known as the cuticular plate. Disruption of the parallel actin bundles forming the stereocilia results in hearing impairments and balance defects. The cuticular plate is thought to be involved in holding the stereocilia in place. However, the precise role of the cuticular plate in hair bundle development, maintenance, and hearing remains unknown. Ultrastructural studies have revealed a complex cytoskeletal architecture, but a lack of knowledge of proteins that inhabit the cuticular plate and a dearth of mutations that perturb relevant proteins have hindered our understanding of the functions of the cuticular plate. Here, we discuss what is known about the structure and development of this unique and poorly‐understood actin‐rich organelle. Birth Defects Research (Part C) 105:126–139, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases so that at the extreme distal end the length of the tallest row of the staircase is 5.5 micron and the shortest row is 2 micron. During development hair cells form their staircases in four phases of growth separated from each other by developmental time. First, stereocilia sprout from the apical surfaces of the hair cells (8-10-d embryos). Second (10-12-d embryos), what will be the longest row of the staircase begins to elongate. As the embryo gets older successive rows of stereocilia initiate elongation. Thus the staircase is set up by the sequential initiation of elongation of stereociliary rows located at increased distances from the row that began elongation. Third (12-17-d embryos), all the stereocilia in the newly formed staircase elongate until those located on the first step of the staircase have reached the prescribed length. In the final phase (17-d embryos to hatchlings) there is a progressive cessation of elongation beginning with the shortest step and followed by taller and taller rows with the tallest step stopping last. Thus, to obtain a pattern of stereocilia in rows of increasing height what transpires are progressive go signals followed by a period when all the stereocilia grow and ending with progressive stop signals. We discuss how such a sequence could be controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号