首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Genetic selection for whole‐plant water use efficiency (yield per transpiration; WUEplant) in any crop‐breeding programme requires high‐throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13Cleaf) has been suggested as a potential time‐integrated proxy for WUEi that may provide a tool to screen for WUEplant. However, a genetic link between δ13Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13Cleaf and WUEplant under well watered and water‐limited growth conditions, a high‐throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were found and co‐localized with transpiration, biomass accumulation, and WUEplant. Additionally, WUEplant for each of the δ13Cleaf QTL allele classes was negatively correlated with δ13Cleaf, as would be predicted when WUEi influences WUEplant. These results demonstrate that δ13Cleaf is genetically linked to WUEplant, likely to be through their relationship with WUEi, and can be used as a high‐throughput proxy to screen for WUEplant in these C4 species.  相似文献   

3.
Breeding economically important C4 crops for enhanced whole‐plant water‐use efficiency (WUEplant) is needed for sustainable agriculture. WUEplant is a complex trait and an efficient phenotyping method that reports on components of WUEplant, such as intrinsic water‐use efficiency (WUEi, the rate of leaf CO2 assimilation relative to water loss via stomatal conductance), is needed. In C4 plants, theoretical models suggest that leaf carbon isotope composition (δ13C), when the efficiency of the CO2‐concentrating mechanism (leakiness, ?) remains constant, can be used to screen for WUEi. The limited information about how ? responds to water limitations confines the application of δ13C for WUEi screening of C4 crops. The current research aimed to test the response of ? to short‐ or long‐term moderate water limitations, and the relationship of δ13C with WUEi and WUEplant, by addressing potential mesophyll CO2 conductance (gm) and biochemical limitations in the C4 plant Sorghum bicolor. We demonstrate that gm and ? are not responsive to short‐ or long‐term water limitations. Additionally, δ13C was not correlated with gas‐exchange estimates of WUEi under short‐ and long‐term water limitations, but showed a significant negative relationship with WUEplant. The observed association between the δ13C and WUEplant suggests an intrinsic link of δ13C with WUEi in this C4 plant, and can potentially be used as a screening tool for WUEplant in sorghum.  相似文献   

4.
This study characterized morphological and physiological responses of two Malus species to exogenous abscisic acid (ABA) application under both well-watered and drought-stressed conditions. Exogenous ABA was sprayed onto the leaves of potted 1-year-old seedlings of M. sieversii and M. hupehensis, originated from regions with low annual rainfall and high annual rainfall, respectively. The results demonstrated that exogenous ABA application significantly decreased height growth (H), total biomass (TB), total leaf area (LA), net photosynthesis (A) and stomatal conductance (g s), and significantly increased root/shoot ratio (RS), specific leaf area (SLA), endogenous ABA concentration, water use efficiency (WUE) and carbon isotope composition (δ13C) under both well-watered and drought-stressed conditions. However, distinct interspecific differences were found in ABA-induced morphological and physiological responses. Compared with M. hupehensis, M. sieversii was more responsive to exogenous ABA application, resulting in larger decreases in H, LA, A and g s, and larger increases in RS, SLA, WUEL, WUEi, ABA and δ13C. These results suggest strong evidence for different maintenance of fitness under stressful conditions between species of Malus. In addition, application of exogenous ABA appears to enhance the tolerance of two Malus species to drought-stress.  相似文献   

5.
Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf‐scale traits, including foliar 13C isotope discrimination (Δ13C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. Fifty‐five species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: (i) Does Δ13C and intrinsic water‐use efficiency (WUEi) vary with climate at a continental scale? (ii) What are the seasonal and spatial patterns in Δ13C/WUEi across biomes and species? (iii) To what extent does Δ13C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and (iv) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ13C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ13C/WUEi. Temperature‐related variables exerted larger effects than rainfall‐related variables. The relative importance of photosynthesis and stomatal conductance (gs) in determining Δ13C differed across seasons: Δ13C was more strongly regulated by gs during the dry‐season and by photosynthetic capacity during the wet‐season. Δ13C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf Nmass was significantly and positively correlated with MAP during dry‐ and wet‐seasons and with moisture index (MI) during the wet‐season but was not correlated with Δ13C. Leaf Pmass showed significant positive relationship with MAP and Δ13C only during the dry‐season. For all leaf nutrient‐related traits, the relationships obtained for Δ13C with MAP or MI indicated that Δ13C at the species level reliably reflects the water status at the site level. Temperature and water availability, not foliar nutrient content, are the principal factors influencing Δ13C across Australia.  相似文献   

6.
Water‐use efficiency (WUE) has been recognized as an important characteristic of ecosystem productivity, which links carbon (C) and water cycling. However, little is known about how WUE responds to climate change at different scales. Here, we investigated WUE at leaf, canopy, and ecosystem levels under increased precipitation and warming from 2005 to 2008 in a temperate steppe in Northern China. We measured gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), evapotranspiration (ET), evaporation (E), canopy transpiration (Tc), as well as leaf photosynthesis (Pmax) and transpiration (Tl) of a dominant species to calculate canopy WUE (WUEc=GEP/T), ecosystem WUE (WUEgep=GEP/ET or WUEnee=NEE/ET) and leaf WUE (WUEl=Pmax/Tl). The results showed that increased precipitation stimulated WUEc, WUEgep and WUEnee by 17.1%, 10.2% and 12.6%, respectively, but decreased WUEl by 27.4%. Climate warming reduced canopy and ecosystem WUE over the 4 years but did not affect leaf level WUE. Across the 4 years and the measured plots, canopy and ecosystem WUE linearly increased, but leaf level WUE of the dominant species linearly decreased with increasing precipitation. The differential responses of canopy/ecosystem WUE and leaf WUE to climate change suggest that caution should be taken when upscaling WUE from leaf to larger scales. Our findings will also facilitate mechanistic understanding of the C–water relationships across different organism levels and in projecting the effects of climate warming and shifting precipitation regimes on productivity in arid and semiarid ecosystems.  相似文献   

7.
We report an analysis of both the long‐ and short‐term drivers of the carbon (C) isotope composition (δ13C) values of current year needles of Pinus sylvestris L. linked to changing atmospheric carbon dioxide (CO2) concentrations (ca) and climate using data from a uniquely long‐term nitrogen (N) fertilization experiment in the north of Sweden (consisting of three N dosage levels and a control treatment) from 1970 until 2002. N loading produced trees with less negative δ13C of foliage, by around 0.45‰ on average, with the difference in δ13C between control and N treatments not dependant upon N dosage. The average δ13C values decreased at a rate of around 0.03‰ yr−1, even after accounting for the Suess effect (the decrease in the atmospheric CO2δ13C due to anthropogenic emissions of isotopically light CO2). This decrease is large enough to cause a significant, progressive change in the δ13C down through a soil profile. Modelled values of plant intrinsic water use efficiency (WUEi) and the ratio of leaf internal to external [CO2] (ci/ca) showed that this was the result of ci increasing in parallel with ca (while ci/ca increased), thus causing little change in WUEi over the 32 years of study. The residuals from the relationships between year and δ13C were used to examine the impact of climate on the interannual variation of C isotope composition of needles. This included the use of a fire hazard index (FHI) model, which integrates climatic factors known to influence plant stomatal conductance and hence δ13C. The FHI produced the best fit with δ13C values when climate data were averaged over the whole growth season (for control plots) and for July for all the N treatments, explaining ca. 60% of the total interannual variation in δ13C. Further, trees from the N treatments appeared more susceptible to air‐humidity‐based climate parameters, as seen from higher correlation coefficients, than were control trees. Thus, our data suggest the possibility of increased susceptibility to drought conditions in ecosystems with moderate to high N deposition rates. Also, there is the possibility that, because there was no apparent change in WUEi of P. sylvestris in this ecosystem over the last 32 years, the rate of sequestration of C into boreal ecosystems may not increase with ca, as has been predicted.  相似文献   

8.
A pot experiment was conducted in a glasshouse to clarify and quantify the effect of plant part, water regime, growth period, and cultivar on carbon isotope discrimination (CID), and to analyze the relationship between CID, stomatal behavior and water-use efficiency (WUE). The experiment was comprised of two upland rice (Oryza sativa L.) cultivars and three water regimes (100, 70, and 40% of saturation moisture) in a completely randomized design. Plants were harvested at tillering, flowering, and maturity. No significant cultivar differences in above-ground dry matter-based WUE (WUEA) and total dry matter-based WUE (WUET) were observed. WUEA (and WUET) increased with water stress up to tillering, but decreased with water stress after tillering. Significant cultivar differences in CID in all the analyzed plant parts were observed at all harvest times. Reduction in CID with water stress was greatest at tillering, and the effect was less pronounced at flowering and at maturity. At each harvest, the effect was most pronounced in newly developed plant parts. Root and grain tended to have the lowest CID values, and stem the highest, at all harvest times. A negative relationship was observed between CID measured at tillering and WUEA (and WUET) measured over the period from seedling to tillering, whereas a reverse relationship was obtained between CID measured at flowering and WUEA (and WUET) measured over the period from tillering to flowering, and an unclear relationship between CID measured at maturity and WUEA (and WUET) measured over the period from flowering to maturity. The ratio of the intercellular and atmospheric concentration of CO2 (Ci/Ca) were closely associated with CID throughout the water regimes when one cultivar was considered, however, cultivar differences in CID were not related to variations in Ci/Ca. The results indicate that significant cultivar difference existed in CID in all the analyzed plant parts at all harvest times, while corresponding difference in WUEA (and WUET) between the cultivars was not necessarily consistent. Abbreviations: WUE – water-use efficiency; WUEi – instantaneous WUE (or leaf transpiration efficiency); ADM – above-ground dry matter; TDM – total dry matter; WUEA– ADM-based WUE; WUET– TDM-based WUE} CID – carbon isotope discrimination; NL – the newest leaves; FEL – recently fully expanded leaves; FL – flag leaves; P – photosynthesis rate; g – leaf stomatal conductance to water vapor; Ci– intercellular CO2 concentration; Ca– atmospheric CO2 concentration; T – transpiration rate; gs – total conductance of CO2  相似文献   

9.

A, assimilation rate
a, fractionation against 13C for CO2 diffusion through air
b, net fractionation against 13C during CO2 fixation
Ca, ambient CO2 concentration
Cc, CO2 concentration at the chloroplast
Ci, intercellular CO2 concentration
D, vapour pressure deficit
En, needle transpiration rate
Ep, whole plant water use
gw, leaf internal transfer conductance to CO2
gs, stomatal conductance to water vapour
L, projected leaf area
NUE, nitrogen use efficiency
PEP, phosphoenolpyruvate
Rubisco, ribulose-1,5-biphosphate carboxylase
TDR, time domain reflectometry
WUE, water use efficiency
Δ, carbon isotope discrimination
δ13C, carbon isotope abundance parameter
δ13Ca, carbon isotopic composition of atmospheric CO2
θ, volumetric soil water content

The effect of nitrogen stress on needle δ13C, water-use efficiency (WUE) and biomass production in irrigated and dry land white spruce (Picea glauca (Moench) Voss) seedlings was investigated. Sixteen hundred seedlings, representing 10 controlled crosses, were planted in the field in individual buried sand-filled cylinders. Two nitrogen treatments were imposed, nitrogen stressed and fertilized. The ranking of δ13C of the crosses was maintained across all combinations of water and nitrogen treatments and there was not a significant genetic versus environmental interaction. The positive relationships between needle δ13C, WUE and dry matter production demonstrate that it should be possible to use δ13C as a surrogate for WUE, and to select for increased WUE without compromising yield, even in nitrogen deficient environments. Nitrogen stressed seedlings had the lowest needle δ13C in both irrigated and dry land conditions. There was a positive correlation between needle nitrogen content and δ13C that was likely associated with increased photosynthetic capacity. There was some indication that decreased nitrogen supply led to increased stomatal conductance and hence lower WUE. There was a negative correlation between intrinsic water use efficiency and photosynthetic nitrogen use efficiency (NUE). This suggests that white spruce seedlings have the ability to maximize NUE when water becomes limited. There was significant genetic variation in NUE that was maintained across treatments. Our results suggest that in white spruce, there is no detectable effect of anaplerotic carbon fixation and that it is more appropriate to use a value of 29‰ (‘Rubisco only’) for the net discrimination against 13C during CO2 fixation. This leads to excellent correspondence between values of Ci/Ca derived from gas exchange measurements or from δ13C.  相似文献   

10.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   

11.
Wildy  Dan T.  Pate  John S.  Sefcik  Lesley T. 《Plant and Soil》2004,262(1-2):111-128
This study compared mature Eucalyptus kochii subsp. plenissima trees in inner regions or edges of natural bushland to young trees belt-planted through cleared agricultural land as uncut saplings or regenerating coppice over 2.7 years at Kalannie, Western Australia (320 mm annual rainfall). We assessed the ability of the species to alter its gas exchange characteristics, leaf physical attributes, and water-use efficiency of foliar carbon assimilation (WUE i) or of total dry matter production (WUE DM). Stomatal conductance (g s) varied five-fold between treatment means, with coppices exhibiting greatest values and mature bush least. Photosynthetic rates followed this trend. Leaf photosynthetic capacity estimated by chlorophyll content varied 1.3-fold parallel with variations in leaf thickness, with coppices rating lowest and mature edge trees most highly. WUE i varied 1.5-fold between treatments and was greatest in mature inner-bush and edge trees. Leaf photosynthetic capacity and g s were both correlated with WUE i. Carbon isotope composition (δ13C values) of new shoot dry matter produced early in a seasonal flush were similar to those of root starch but when averaged over the whole season correlated well with WUE i and gas exchange characteristics of trees of each treatment. Coppices showed poorest WUE i and most negative shoot tip δ13C but their WUE DM was high. This discrepancy was suggested to relate to carbon allocation strategies in coppices favouring fast growth of replacement shoots but not of roots. Physiology of coppice growth of E. kochii is usefully geared towards both rapid and water-use efficient production of woody biomass in water limited environments.  相似文献   

12.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   

13.
The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy‐devoted systems. We characterized variations in the carbon isotope composition (δ13C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short‐rotation plantation. Values of δ13Cwood and δ13Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79–1.01‰). Leaf phenology was strongly correlated with δ13C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ13C. Trees growing on former pasture with higher N‐availability displayed higher δ13C as compared with trees growing on former cropland. The positive relationships between δ13Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N‐related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ13C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.  相似文献   

14.
In plants, most water is absorbed by roots and transported through vascular conduits of xylem which evaporate from leaves during photosynthesis. As photosynthesis and transport processes are interconnected, it was hypothesized that any variation in water transport demand influencing water use efficiency (WUE), such as the evolution of C4 photosynthesis, should affect xylem structure and function. Several studies have provided evidence for this hypothesis, but none has comprehensively compared photosynthetic, hydraulic and biomass allocation properties between C3 and C4 species. In this study, photosynthetic, hydraulic and biomass properties in a closely related C3 Tarenaya hassleriana and a C4 Cleome gynandra are compared. Light response curves, measured at 30°C, showed that the C4 C. gynandra had almost twice greater net assimilation rates than the C3 T. hassleriana under each increasing irradiation level. On the contrary, transpiration rates and stomatal conductance were around twice as high in the C3, leading to approximately 3.5 times higher WUE in the C4 compared with the C3 species. The C3 showed about 3.3 times higher hydraulic conductivity, 4.3 times greater specific conductivity and 2.6 times higher leaf‐specific conductivity than the C4 species. The C3 produced more vessels per xylem area and larger vessels. All of these differences resulted in different biomass properties, where the C4 produced more biomass in general and had less root to shoot ratio than the C3 species. These results are in support of our previous findings that WUE, and any changes that affect WUE, contribute to xylem evolution in plants.  相似文献   

15.
Pinsapo fir (Abies pinsapo Boiss.) is an endangered Mediterranean conifer that has raised strong conservation interest as a paradigmatic example of species characterized by small and fragmented populations. We studied an old reforestation stand composed of A. pinsapo, Pinus nigra and Pinus sylvestris established in the 1910s in central-eastern Spain (about 500 km north of the species native distribution range), with the aim of evaluating the stand’s suitability as an ex situ conservation unit for the fir. To this end, we investigated the long-term performance of the stand and assessed genetic diversity of A. pinsapo. Tree-ring width (TRW) and carbon isotope discrimination (Δ13C) were used to characterise growth dynamics and intrinsic water-use efficiency (WUEi), respectively. Furthermore, 42 pinsapo firs were genotyped at five microsatellite loci to compare their genetic variation with published data on natural populations. A. pinsapo showed ca. two-fold higher radial growth than pines in the last 80 years; however, a growth decrease was observed for all species from the 1990s onwards. Indexed TRW was positively associated with Δ13C at the species level, denoting inter-annual growth dependence on water availability. Overall, Δ13C was higher for A. pinsapo compared to pines, indicating lower WUEi, but Δ13C significantly decreased over the last 50 years for all species, likely as the result of tighter stomatal regulation of water loss, resulting in WUEi increases of about 25 %. Recently, however, A. pinsapo showed reduced WUEi increase in concord with growth slowdown, suggesting a threshold response for stomatal regulation. Although genetic diversity of A. pinsapo was about half of natural populations, the old-planted stand could be important for the conservation of this endemic species considering its good long-term growth and physiology. The latest decrease in performance of A. pinsapo, however, asks for urgent management measures aimed at reducing the competition for water and promoting growth and natural regeneration. This study illustrates the potential of combining tree-ring-based long-term physiological information with genetic data to ascertain the prospects of artificial stands for conservation purposes.  相似文献   

16.
Plants using the C4 photosynthetic pathway have greater water use efficiency (WUE) than C3 plants of similar ecological function. Consequently, for equivalent rates of photosynthesis in identical climates, C4 plants do not need to acquire and transport as much water as C3 species. Because the structure of xylem tissue reflects hydraulic demand by the leaf canopy, a reduction in water transport requirements due to C4 photosynthesis should affect the evolution of xylem characteristics in C4 plants. In a comparison of stem hydraulic conductivity and vascular anatomy between eight C3 and eight C4 herbaceous species, C4 plants had lower hydraulic conductivity per unit leaf area (KL) than C3 species of similar life form. When averages from all the species were pooled together, the mean KL for the C4 species was 1.60 × 10?4 kg m?1 s?1 MPa?1, which was only one‐third of the mean KL of 4.65 × 10?4 kg m?1 s?1 MPa?1 determined for the C3 species. The differences in KL between C3 and C4 species corresponded to the two‐ to three‐fold differences in WUE observed between C3 and C4 plants. In the C4 species from arid regions, the difference in KL was associated with a lower hydraulic conductivity per xylem area, smaller and shorter vessels, and less vulnerable xylem to cavitation, indicating the C4 species had evolved safer xylem than the C3 species. In the plants from resource‐rich areas, such as the C4 weed Amaranthus retroflexus, hydraulic conductivity per xylem area and xylem anatomy were similar to that of the C3 species, but the C4 plants had greater leaf area per xylem area. The results indicate the WUE advantage of C4 photosynthesis allows for greater flexibility in hydraulic design and potential fitness. In resource‐rich environments in which competition is high, an existing hydraulic design can support greater leaf area, allowing for higher carbon gain, growth and competitive potential. In arid regions, C4 plants evolved safer xylem, which can increase survival and performance during drought events.  相似文献   

17.
Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33–42°C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R 2 = 0.54; P < 0.01), and photosynthesis rate (R 2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.  相似文献   

18.
The predicted worldwide increase in arid areas and water stress episodes will strongly affect crop production. Plants have developed a wide diversity of physiological mechanisms for drought tolerance. A decline in photosynthesis and thus yield production is a common response to drought, as are increases in the water use efficiency of photosynthesis (WUEph) and productivity (WUEp). The aim of our study was to determine the physiological effects (especially WUEph and WUEp) of progressive drought and subsequent recovery in three cultivars adapted to a Mediterranean climate [Tafilalet (TA), Tierra de Campos (TC), and Moapa (MO)], and another representative from an oceanic climate (Europe (EU)). The accuracy of the relationships between WUEph or WUEp and carbon isotope discrimination (Δ 13C) in shoots was also investigated as a function of water stress intensity. Mild drought (7 days of water withholding) decreased the net CO2 exchange (A), leaf conductance to water (g) and transpiration in EU leading to an increased WUEph. Δ 13C was correlated with WUEp but not with WUEph, probably due to a late decrease in g. After moderate drought (14 days), A and g decreased in all cultivars, increasing WUEph. In this period WUEp also increased. Both WUE parameters were correlated with Δ 13C, which may indicate that the g value at the end of moderate water stress was representative of the growing period. After 21 days, TA was the most productive cultivar but under severe drought conditions there was no difference in DM accumulation among cultivars. After the recovery period, leaf area was increased but not total DM, showing that leaves were the most responsive organs to rewatering. Severe water stress did not decrease WUEph or WUEp, and Δ 13C did not increase after recovery. This absence of a response to severe drought may indicate significant effects on the photosynthetic apparatus after 21 days of withholding water. As for mild drought, WUEp but not WUEph was correlated with Δ 13C, supporting the view that WUEp is a more integrative parameter than WUEph.  相似文献   

19.
Measurements of the carbon (δ13Cm) and oxygen (δ18Om) isotope composition of C3 plant tissue provide important insights into controls on water‐use efficiency. We investigated the causes of seasonal and inter‐annual variability in water‐use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf‐scale) and eddy covariance measurements (ecosystem‐scale). The positive relationship between δ13Cm and δ18Om values for samples collected during 1998–2001 indicated that variation in stomatal conductance and water stress‐induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ13Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ13Cm and δ18Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water‐use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci/ca during the drier conditions of 2000. Calculated values of leaf‐scale water‐use efficiency were 2–3 times higher than ecosystem‐scale water‐use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements.  相似文献   

20.
Kocacinar F  Sage RF 《Oecologia》2004,139(2):214-223
Xylem structure and function is proposed to reflect an evolutionary balance between demands for efficient movement of water to the leaf canopy and resistance to cavitation during high xylem tension. Water use efficiency (WUE) affects this balance by altering the water cost of photosynthesis. Therefore species of greater WUE, such as C4 plants, should have altered xylem properties. To evaluate this hypothesis, we assessed the hydraulic and anatomical properties of 19 C3 and C4 woody species from arid regions of the American west and central Asia. Specific conductivity of stem xylem (Ks ) was 16%–98% lower in the C4 than C3 shrubs from the American west. In the Asian species, the C3 Nitraria schoberi had similar and Halimodendron halodendron higher Ks values compared with three C4 species. Leaf specific conductivity (KL ; hydraulic conductivity per leaf area) was 60%–98% lower in the C4 than C3 species, demonstrating that the presence of the C4 pathway alters the relationship between leaf area and the ability of the xylem to transport water. C4 species produced similar or smaller vessels than the C3 shrubs except in Calligonum, and most C4 shrubs exhibited higher wood densities than the C3 species. Together, smaller conduit size and higher wood density indicate that in most cases, the C4 shrubs exploited higher WUE by altering xylem structure to enhance safety from cavitation. In a minority of cases, the C4 shrubs maintained similar xylem properties but enhanced the canopy area per branch. By establishing a link between C4 photosynthesis and xylem structure, this study indicates that other phenomena that affect WUE, such as atmospheric CO2 variation, may also affect the evolution of wood structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号