首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
In order to elucidate genetic composition of European grayling (Thymallus thymallus) populations in the Western Balkans, the partial mitochondrial DNA (mtDNA) control region was sequenced and 12 microsatellite loci genotyped in 14 populations originating from tributaries of the Adriatic and Danube drainages. Eleven mtDNA haplotypes were found, one confined to the Adriatic clade, one to the Alpine group and the rest to the ‘Balkan’ grayling phylogenetic clade. Haplotypes from the Balkan clade were confined to the Danube drainage and constituted two groups: northern group with haplotypes found in the Slovenian part of the Danube drainage, and southern group, consisting from Bosnia–Herzegovina and Montenegro. Substantial genetic distance between northern and southern groups of haplotypes (0.75–1.8%) and well supported divisions within the northern group indicate very structured grayling population within the studied Danube basin that most probably did not evolve due to vicariance but rather as a consequence of multiple colonization waves that might have occurred during the Pleistocene. Furthermore, genetic distance of ~4% between Adriatic and Danube populations’ haplotypes, suggest that their separation occurred in mid-Pliocene. These findings imply a complex colonization pattern of the Western Balkans drainages. Microsatellite data also confirm high genetic diversity in Western Balkans populations of grayling (on average 7.5 alleles per microsatellite locus and H exp 0.58). Limited stocking activities were detected based on microsatellites and mtDNA data. Regarding current knowledge of grayling phylogeography appropriate management strategies were proposed to preserve unique, autochthonous grayling populations in Western Balkan.  相似文献   

2.

Background

Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated.

Methods and Findings

ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades.

Conclusions

Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa  相似文献   

3.

Background

Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland.

Methods

One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses.

Results

Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28).

Conclusions

Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0121-9) contains supplementary material, which is available to authorized users.  相似文献   

4.
Phylogeographic information on European grayling, Thymallus thymallus, is still fragmentary for the Northern Adriatic basin. In this article, we provide complete mitochondrial DNA control region sequence data of 456 grayling specimens from 21 sampling sites across distinct river drainages. Thirty-seven haplotypes were resolved and clustered into Danubian, Atlantic and Adriatic lineages. The latter clade, composed of 16 new haplotypes, was identified in 12 out of 17 Adriatic sampling sites and reached frequencies of 0.97 within single water courses of the Adige and the Po drainages. However, native Adriatic haplotypes were accompanied by Danubian and/or Atlantic variants in all cases. A positive correlation between hatchery haplotype frequency and annual stocking input pointed to a direct effect of stocking intensity on the genetic architecture of wild populations, although natural trans-basin colonisation may have additionally complicated the situation. However, both the extent and patterns of introgression between native and foreign strains, as well as microgeographic population structure within the Adriatic lineage will be clarified by future molecular surveys, based on nuclear genetic markers. Until then, conservation management must include an immediate cessation of stocking of commercial grayling stocks, as well as the prohibition of grayling translocation, even at the intra-drainage level.  相似文献   

5.
Dong YW  Wang HS  Han GD  Ke CH  Zhan X  Nakano T  Williams GA 《PloS one》2012,7(4):e36178

Aim

Genetic data were used to measure the phylogeographic distribution of the limpet, Cellana toreuma along the China coast in order to acsertain impacts of historic events, ocean currents and especially freshwater discharge from the Yangtze River on the connectivity of intertidal species with limited larval dispersal capability.

Methodology/Principal Findings

Genetic variation in 15 populations of C. toreuma (n = 418), ranging from the Yellow Sea (YS), East China Sea (ECS) and South China Sea (SCS), were determined from partial mitochondrial cytochrome c oxidase subunit I gene. Genetic diversity and divergence based on haplotype frequencies were analyzed using CONTRIB, and AMOVA was used to examine genetic population structure. Historic demographic expansions were evaluated from both neutrality tests and mismatch distribution tests. Among the 30 haplotypes identified, a dominant haplotype No. 1 (H1) existed in all the populations, and a relatively abundant private haplotype (H2) in YS. Pairwise FST values between YS and the other two groups were relatively high and the percentage of variation among groups was 10.9%.

Conclusions

The high nucleotide and gene diversity in the YS, with large pairwise genetic distances and relatively high percentages of variation among groups, suggests that this group was relatively isolated from ECS and SCS. This is likely driven by historic events, ocean currents, and demographic expansion. We propose that freshwater discharge from the Yangtze River, which may act as physical barrier limiting the southward dispersal of larvae from northern populations, is especially important in determining the separation of the YS group from the rest of the Chinese populations of C. toreuma.  相似文献   

6.

Background

Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest.

Methodology/Principal Findings

By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves.

Conclusions/Significance

We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.  相似文献   

7.

Background

Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called crossbreeding and hybridization in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.

Results

We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population.

Conclusion

Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.  相似文献   

8.
Abstract For a phylogeographical analysis of European grey partridge (Perdix perdix) we sequenced 390 nucleotides of the 5′ end of the mitochondrial control region (CR) of 227 birds from several localities. The birds were divided into two major clades (western and eastern) which differed in control region 1 (CR1) by 14 nucleotide substitutions (3.6%). For estimation of the time of divergence, the whole CR of 14 specimens was sequenced. The major clades differed by 2.2%, corresponding to an estimated coalescence time of c. 1.1 million years. On CR1, 45 haplotypes were found. Western clade haplotypes were found in France, England, Germany, Poland, Italy and Austria. Eastern clade haplotypes were found in Finland, Bulgaria, Greece, and Ireland. One Finnish population and all Bulgarian and Irish populations were mixed, but only in Bulgaria was the mixing assumed to be natural. Nucleotide and haplotype diversities varied between populations, and both clades showed geographical structuring. The distribution of pairwise nucleotide differences in the eastern clade fitted the expectations of an expanding population. About 80% of the genetic structure in the grey partridge could be explained by the clades. The western clade presumably originates on the Iberian Peninsula (with related subtypes in Italy), and the eastern clade either on the Balkan or Caucasian refugia. Large‐scale hand‐rearing and releasing of western partridges have introduced very few mtDNA marks into the native eastern populations in Finland.  相似文献   

9.

Background

Pinus massoniana, an ecologically and economically important conifer, is widespread across central and southern mainland China and Taiwan. In this study, we tested the central–marginal paradigm that predicts that the marginal populations tend to be less polymorphic than the central ones in their genetic composition, and examined a founders'' effect in the island population.

Methodology/Principal Findings

We examined the phylogeography and population structuring of the P. massoniana based on nucleotide sequences of cpDNA atpB-rbcL intergenic spacer, intron regions of the AdhC2 locus, and microsatellite fingerprints. SAMOVA analysis of nucleotide sequences indicated that most genetic variants resided among geographical regions. High levels of genetic diversity in the marginal populations in the south region, a pattern seemingly contradicting the central–marginal paradigm, and the fixation of private haplotypes in most populations indicate that multiple refugia may have existed over the glacial maxima. STRUCTURE analyses on microsatellites revealed that genetic structure of mainland populations was mediated with recent genetic exchanges mostly via pollen flow, and that the genetic composition in east region was intermixed between south and west regions, a pattern likely shaped by gene introgression and maintenance of ancestral polymorphisms. As expected, the small island population in Taiwan was genetically differentiated from mainland populations.

Conclusions/Significance

The marginal populations in south region possessed divergent gene pools, suggesting that the past glaciations might have low impacts on these populations at low latitudes. Estimates of ancestral population sizes interestingly reflect a recent expansion in mainland from a rather smaller population, a pattern that seemingly agrees with the pollen record.  相似文献   

10.

Background

Wuchereria bancrofti (Wb) is the primary causative agent of lymphatic filariasis (LF). Our studies of LF in Papua New Guinea (PNG) have shown that it is possible to reduce the prevalence of Wb in humans and mosquitoes through mass drug administration (MDA; diethylcarbamazine with/without ivermectin). While MDAs in the Dreikikir region through 1998 significantly reduced prevalence of Wb infection, parasites continue to be transmitted in the area.

Methods

We sequenced the Wb mitochondrial Cytochrome Oxidase 1 (CO1) gene from 16 people infected with Wb. Patients were selected from 7 villages encompassing both high and moderate annual transmission potentials (ATP). We collected genetic data with the objectives to (i) document contemporary levels of genetic diversity and (ii) distinguish between populations of parasites and hosts across the study area.

Principle Findings

We discovered 109 unique haplotypes currently segregating in the Wb parasite population, with one common haplotype present in 15 out of 16 infections. We found that parasite diversity was similar among people residing within the same village and clustered within transmission zones. For example, in the high transmission area, diversity tended to be more similar between neighboring villages, while in the moderate transmission area, diversity tended to be less similar.

Conclusions

In the Dreikikir region of PNG there are currently high levels of genetic diversity in populations of Wb. High levels of genetic diversity may complicate future MDAs in this region and the presence of dominant haplotypes will require adjustments to current elimination strategies.  相似文献   

11.

Background

Schistosoma japonicum still causes severe parasitic disease in mainland China, but mainly in areas along the Yangtze River. However, the genetic diversity in populations of S. japonicum has not been well understood across its geographical distribution, and such data may provide insights into the epidemiology and possible control strategies for schistosomiasis.

Methodology/Principal Findings

In this study infected Oncomelania snails were collected from areas in the middle and lower (ML) reaches of the Yangtze River, including Hubei, Hunan, Anhui, Jiangxi and Jiangsu provinces, and in the upper reaches of the river, including Sichuan and Yunnan provinces in southwest (SW) China. The adult parasites obtained from experimentally infected mice using isolated cercariae were sequenced individually for several fragments of mitochondrial regions, including Cytb-ND4L-ND4, 16S-12S and ND1. Populations in the ML reaches exhibited a relatively high level of diversity in nucleotides and haplotypes, whereas a low level was observed for populations in the SW, using either each single fragment or the combined sequence of the three fragments. Pairwise analyses of F-statistics (Fst) revealed a significant genetic difference between populations in the ML reaches and those in the SW, with limited gene flow and no shared haplotypes in between. It is rather obvious that genetic diversity in the populations of S. japonicum was significantly correlated with the geographical distance, and the geographical separation/isolation was considered to be the major factor accounting for the observed difference between populations in the ML reaches and those in the SW in China.

Conclusions

S. japonicum in mainland China exhibits a high degree of genetic diversity, with a similar pattern of genetic diversity as observed in the intermediate host snails in the same region in China.  相似文献   

12.

Background

Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement.

Results

Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations.

Conclusions

These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection for medicinal quality has resulted in genetic differentiation between cultivated and wild populations. Furthermore, it appears that wild populations in Jiangxi-Hunan area were involved in the origin of cultivated S. ningpoensis.  相似文献   

13.

Background

Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics.

Objective

To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias.

Design, Setting, and Participants

A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArray® NT Cycler.

Outcome Measurements and Statistical Analysis

Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer.

Results and Limitations

We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics.

Conclusion

Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.  相似文献   

14.

Background

Size of the reference population and reliability of phenotypes are crucial factors influencing the reliability of genomic predictions. It is therefore useful to combine closely related populations. Increased accuracies of genomic predictions depend on the number of individuals added to the reference population, the reliability of their phenotypes, and the relatedness of the populations that are combined.

Methods

This paper assesses the increase in reliability achieved when combining four Holstein reference populations of 4000 bulls each, from European breeding organizations, i.e. UNCEIA (France), VikingGenetics (Denmark, Sweden, Finland), DHV-VIT (Germany) and CRV (The Netherlands, Flanders). Each partner validated its own bulls using their national reference data and the combined data, respectively.

Results

Combining the data significantly increased the reliability of genomic predictions for bulls in all four populations. Reliabilities increased by 10%, compared to reliabilities obtained with national reference populations alone, when they were averaged over countries and the traits evaluated. For different traits and countries, the increase in reliability ranged from 2% to 19%.

Conclusions

Genomic selection programs benefit greatly from combining data from several closely related populations into a single large reference population.  相似文献   

15.

Rationale

To improve the quality of exercise-based cardiac rehabilitation (CR) in patients with chronic heart failure (CHF) a practice guideline from the Dutch Royal Society for Physiotherapy (KNGF) has been developed.

Guideline development

A systematic literature search was performed to formulate conclusions on the efficacy of exercise-based intervention during all CR phases in patients with CHF. Evidence was graded (1–4) according the Dutch evidence-based guideline development criteria.

Clinical and research recommendations

Recommendations for exercise-based CR were formulated covering the following topics: mobilisation and treatment of pulmonary symptoms (if necessary) during the clinical phase, aerobic exercise, strength training (inspiratory muscle training and peripheral muscle training) and relaxation therapy during the outpatient CR phase, and adoption and monitoring training after outpatient CR.

Applicability and implementation issues

This guideline provides the physiotherapist with an evidence-based instrument to assist in clinical decision-making regarding patients with CHF. The implementation of the guideline in clinical practice needs further evaluation.

Conclusion

This guideline outlines best practice standards for physiotherapists concerning exercise-based CR in CHF patients. Research is needed on strategies to improve monitoring and follow-up of the maintenance of a physical active lifestyle after supervised CR.  相似文献   

16.

Background

Spirometry reference values are important for the interpretation of spirometry results. Reference values should be updated regularly, derived from a population as similar to the population for which they are to be used and span across all ages. Such spirometry reference equations are currently lacking for central European populations.

Objective

To develop spirometry reference equations for central European populations between 8 and 90 years of age.

Materials

We used data collected between January 1993 and December 2010 from a central European population. The data was modelled using “Generalized Additive Models for Location, Scale and Shape” (GAMLSS).

Results

The spirometry reference equations were derived from 118''891 individuals consisting of 60''624 (51%) females and 58''267 (49%) males. Altogether, there were 18''211 (15.3%) children under the age of 18 years.

Conclusion

We developed spirometry reference equations for a central European population between 8 and 90 years of age that can be implemented in a wide range of clinical settings.  相似文献   

17.

Background

Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia.

Methods

H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA.

Key results

The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity.

Conclusions

The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.  相似文献   

18.

Background

In livestock populations, missing genotypes on a large proportion of animals are a major problem to implement the estimation of marker-assisted breeding values using haplotypes. The objective of this article is to develop a method to predict haplotypes of animals that are not genotyped using mixed model equations and to investigate the effect of using these predicted haplotypes on the accuracy of marker-assisted breeding value estimation.

Methods

For genotyped animals, haplotypes were determined and for each animal the number of haplotype copies (nhc) was counted, i.e. 0, 1 or 2 copies. In a mixed model framework, nhc for each haplotype were predicted for ungenotyped animals as well as for genotyped animals using the additive genetic relationship matrix. The heritability of nhc was assumed to be 0.99, allowing for minor genotyping and haplotyping errors. The predicted nhc were subsequently used in marker-assisted breeding value estimation by applying random regression on these covariables. To evaluate the method, a population was simulated with one additive QTL and an additive polygenic genetic effect. The QTL was located in the middle of a haplotype based on SNP-markers.

Results

The accuracy of predicted haplotype copies for ungenotyped animals ranged between 0.59 and 0.64 depending on haplotype length. Because powerful BLUP-software was used, the method was computationally very efficient. The accuracy of total EBV increased for genotyped animals when marker-assisted breeding value estimation was compared with conventional breeding value estimation, but for ungenotyped animals the increase was marginal unless the heritability was smaller than 0.1. Haplotypes based on four markers yielded the highest accuracies and when only the nearest left marker was used, it yielded the lowest accuracy. The accuracy increased with increasing marker density. Accuracy of the total EBV approached that of gene-assisted BLUP when 4-marker haplotypes were used with a distance of 0.1 cM between the markers.

Conclusions

The proposed method is computationally very efficient and suitable for marker-assisted breeding value estimation in large livestock populations including effects of a number of known QTL. Marker-assisted breeding value estimation using predicted haplotypes increases accuracy especially for traits with low heritability.  相似文献   

19.

Background

The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses.

Methodology/Principal findings

We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure.

Conclusions

Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.  相似文献   

20.

Background

The extant roe deer (Capreolus Gray, 1821) includes two species: the European roe deer (C. capreolus) and the Siberian roe deer (C. pygargus) that are distinguished by morphological and karyotypical differences. The Siberian roe deer occupies a vast area of Asia and is considerably less studied than the European roe deer. Modern systematics of the Siberian roe deer remain controversial with 4 morphological subspecies. Roe deer fossilized bones are quite abundant in Denisova cave (Altai Mountains, South Siberia), where dozens of both extant and extinct mammalian species from modern Holocene to Middle Pleistocene have been retrieved.

Methodology/Principal Findings

We analyzed a 629 bp fragment of the mitochondrial control region from ancient bones of 10 Holocene and four Pleistocene Siberian roe deer from Denisova cave as well as 37 modern specimen belonging to populations from Altai, Tian Shan (Kyrgyzstan), Yakutia, Novosibirsk region and the Russian Far East. Genealogical reconstructions indicated that most Holocene haplotypes were probably ancestral for modern roe deer populations of Western Siberia and Tian Shan. One of the Pleistocene haplotypes was possibly ancestral for modern Yakutian populations, and two extinct Pleistocene haplotypes were close to modern roe deer from Tian Shan and Yakutia. Most modern geographical populations (except for West Siberian Plains) are heterogeneous and there is some tentative evidence for structure. However, we did not find any distinct phylogenetic signal characterizing particular subspecies in either modern or ancient samples.

Conclusion/Significance

Analysis of mitochondrial DNA from both ancient and modern samples of Siberian roe deer shed new light on understanding the evolutionary history of roe deer. Our data indicate that during the last 50,000 years multiple replacements of populations of the Siberian roe deer took place in the Altai Mountains correlating with climatic changes. The Siberian roe deer represent a complex and heterogeneous species with high migration rates and without evident subspecies structure. Low genetic diversity of the West Siberian Plain population indicates a recent bottleneck or founder effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号