首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The vitamin K epoxide reductase (VKORC1) is a key enzyme in the vitamin K cycle impacting various biological processes. VKORC1 genetic variability has been extensively studied in the context of warfarin pharmacogenetics revealing different distributions of VKORC1 haplotypes in various populations. We previously identified the VKORC1 Asp36Tyr mutation that was associated with warfarin resistance and with distinctive ethnic distribution. In this study, we performed haplotype analysis using Asp36Tyr and seven other VKORC1 markers in Ashkenazi and Ethiopian-Jewish and non-Jewish individuals. The VKORC1 variability was represented by nine haplotypes (V1-V9) that could be grouped into two distinct clusters (V1-V3 and V4-V9) with intra-cluster difference limited to two nucleotide changes. Phylogeny analysis suggested that these haplotypes could have developed from an ancestral variant, the common V8 haplotype (40 % in all population samples), after ten single mutation events. Asp36Tyr was exclusive to the V5 haplotype of the second cluster. Two haplotypes V5 and V4, distinguished only by Asp36Tyr, were prevalent in both Ethiopian population samples. The V2 haplotype, belonging to the first cluster, was the second most prevalent haplotype in the Ashkenazi population sample (15.8 %) but relatively uncommon in the Ethiopian origin (4.5-4.7 %). We discuss the genetic diversity among studied populations and its potential impact on warfarin-dose management in certain populations of African and European origin.  相似文献   

2.
The vitamin K oxidoreductase (VKORC1) recycles vitamin K to support the activation of vitamin K-dependent (VKD) proteins, which have diverse functions that include hemostasis and calcification. VKD proteins are activated by Glu carboxylation, which depends upon the oxygenation of vitamin K hydroquinone (KH2). The vitamin K epoxide (KO) product is recycled by two reactions, i.e. KO reduction to vitamin K quinone (K) and then to KH2, and recent studies have called into question whether VKORC1 reduces K to KH2. Analysis in insect cells lacking endogenous carboxylation components showed that r-VKORC1 reduces KO to efficiently drive carboxylation, indicating KH2 production. Direct detection of the vitamin K reaction products is confounded by KH2 oxidation, and we therefore developed a new assay that stabilized KH2 and allowed quantitation. Purified VKORC1 analyzed in this assay showed efficient KO to KH2 reduction. Studies in 293 cells expressing tagged r-VKORC1 revealed that VKORC1 is a multimer, most likely a dimer. A monomer can only perform one reaction, and a dimer is therefore interesting in explaining how VKORC1 accomplishes both reactions. An inactive mutant (VKORC1(C132A/C135A)) was dominant negative in heterodimers with wild type VKORC1, resulting in decreased KO reduction in cells and carboxylation in vitro. The results are significant regarding human VKORC1 mutations, as warfarin-resistant patients have mutant and wild type VKORC1 alleles. A VKORC1 dimer indicates a mixed population of homodimers and heterodimers that may have different functional properties, and VKORC1 reduction may therefore be more complex in these patients than appreciated previously.  相似文献   

3.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   

4.
5.

Background

Warfarin is a widely prescribed anticoagulant with narrow therapeutic window for thromboembolic events. Warfarin displays large individual variability in dose requirements. The purpose of this study is to assess the contribution of patient-specific and genetic risk factors to dose requirements of patients on either high or low warfarin maintenance dose in Ghana. Blood samples were collected from 141 (62 males, 79 females) Ghanaian patients on stable warfarin dose to determine their INR. Influence of patient specific factors and gene variations within VKORC1, CYP2C9 and CYP4F2 were determined in patients on either high or low warfarin maintenance dose.

Results

One hundred and forty-one patients took part in the study with 79 (56%) participants being Female. The median age of the study participants was 48 years [IQR: 34–58]. The median duration for patients to be on warfarin therapy was 24 months [IQR: 10–72]. Majority of the study participants (80.9%, n = 114) did not have any side effects to warfarin. CYP2C9*2 and CYP2C9*3 variant alleles were not detected. VKORC1 variant allele was observed at 6% and CYP4F2 variant allele was observed at 41%. Duration of patients on warfarin therapy was marginally associated with high warfarin dose (adjusted OR = 1.01 [95% CI 1.00–1.02], p = 0.033) while the odds of heterozygous individuals (G/A) for VKORC1 gene to have high warfarin dose compared to persons with homozygous (G/G) (adjusted OR = 0.06 [95% CI 0.01–0.63], p = 0.019). Age, gender, diagnosis, presence of side effects and other medications were not associated with warfarin dose (p = 0.05).

Conclusion

This study provides data on VKORC1 and CYP4F2 variants among an indigenous African population. Duration of patients on warfarin therapy was marginally associated with high warfarin dose. CYP2C9*2 and *3 variants were not detected and may not be the most important genetic factor for warfarin maintenance dose among Ghanaians.
  相似文献   

6.
VKORC1 genetic polymorphisms affect warfarin dose response, aortic calcification, and the susceptibility of coronary artery disease as shown in our previous study. Little is known regarding the association of VKORC1 polymorphisms with coronary artery calcification (CAC) and the role of CAC in the association with coronary artery disease (CAD). Due to a natural haplotype block in the VKORC1 gene in Chinese, polymorphism rs2359612 was analyzed in a case–control study and a prospective study. The case–control study included 464 CAD patients with non-calcified plaque (NCP), 562 CAD patients with mixed calcified plaque (MCP), 492 subjects with calcified plaque (CP), and 521 controls. The rs2359612C was only associated with increased risk of MCP, the CAD in the presence of CAC; the odds ratio was 1.397 (95 % CI 1.008–1.937, P < 0.05), which was replicated in the second independent population. On the contrary, a negative correlation was observed between rs2359612 and log-transformed Agatston score, and rs2359612 was negatively associated with the number of calcified vessels. Moreover, in a prospective study including 849 CAD patients undergoing revascularization, rs2359612C predicted a higher incidence of cardiovascular events in MCP subgroup; the relative risk was 1.435 (95 % CI 1.008–2.041, P = 0.045), which was not observed in the NCP subgroup. We conclude that the rs2359612C was associated with a higher risk of CAD in the presence of CAC and a higher incidence of cardiovascular events in CAD patients with CAC, but a lower coronary calcification. VKORC1 polymorphisms may be associated with the endophenotype of CAD, calcification-related atherosclerosis.  相似文献   

7.
VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.  相似文献   

8.
Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1''s active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1''s overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1''s active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.  相似文献   

9.

BACKGROUND:

Genetic variation in the vitamin K epoxide reductase complex (VKORC1) and cytochrome P450 4F2 (CYP4F2) genes were found to be strongly associated with the oral anticoagulant (OA) dose requirement. The distribution of genetic variation in these two genes was found to show large inter- and intra-ethnic difference.

MATERIALS AND METHODS:

A total of 470 unrelated, healthy volunteers of South Indians of either sex (age: 18-60 years) were enrolled for the study. A 5 ml of venous blood was collected and the genomic deoxyribonucleic acid (DNA) was extracted by using phenol-chloroform extraction method. Real-time quantitative polymerase chain reaction (RT-PCR) method was used for genotyping.

RESULTS:

The variant allele frequencies of VKORC1 rs2359612 (T), rs8050894 (C), rs9934438 (T) and rs9923231 (A) were found to be 11.0%, 11.8%, 11.7% and 12.0%, respectively. The variant allele VKORC1 rs7294 was (80.1%) more frequent and the variant allele CYP4F2 * 3 was found to be 41.8% in South Indians. The allele, genotype and haplotype frequencies of VKORC1 and CYP4F2 gene were distinct from other compared HapMap populations (P < 0.0001).

CONCLUSION:

The findings of our study provide the basic genetic information for further pharmacogenetic based investigation of OA therapy in the population.  相似文献   

10.
We present the clinical case of a 10-year-old patient diagnosed with dilated cardiomyopathy who registered INR values above 10 upon receiving standard doses of acenocoumarol, as well as other values reported as uncoagulable, forcing the discontinuation and restart of treatment more than once. Expected and stable INR levels were achieved after more than 30 days of treatment, surprisingly with half the recommended dose for a patient of her age and weight. We decided to conduct a retrospective pharmacogenomic analysis including nucleotide genetic polymorphisms (SNPs) with different degrees of association with the dose/response to antivitamin K (AVK) drugs: rs2108622 (gene CYP4F2), rs9923231, rs7294 (gene VKORC1), rs1799853, and rs1057910 (CYP2C9 gene) using TaqMan® RT-PCR. The patient was homozygous for rs9923231 (VKORC1) and heterozygous for rs2108622 (CYP4F2), a genetic profile strongly associated with a requirement of lower AVK doses as shown by national and international evidence.In conclusion, the pharmacogenetic analysis confirmed that this patient''s genetic conditions, involving low expression of the VKA therapeutic target, required a lower dose than that established in clinical protocols as recommended by the Food and Drug Administration (FDA) and the PharmGKB® for coumarin drugs. A previous genotypic analysis of the patient would have allowed reaching the therapeutic range sooner, thus avoiding potential bleeding risks. This shows the importance of pharmacogenetic analyses for highly variable treatments with a narrow therapeutic range.  相似文献   

11.

Background

Warfarin directly inhibits vitamin K 2,3-epoxide reductase (VKOR) enzymes. Since the early 1970s, warfarin inhibition of vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), an essential enzyme for proper function of blood coagulation in higher vertebrates, has been studied using an in vitro dithiothreitol (DTT) driven enzymatic assay. However, various studies based on this assay have reported warfarin dose–response data, usually summarized as half-maximal inhibitory concentration (IC50), that vary over orders of magnitude and reflect the broad range of conditions used to obtain VKOR assay data.

Methods

We standardized the implementation of the DTT-driven VKOR activity assay to measure enzymatic Michaelis constants (Km) and warfarin IC50 for human VKORC1. A data transformation is defined, based on the previously confirmed bi bi ping-pong mechanism for VKORC1, that relates assay condition-dependent IC50 to condition-independent Ki.

Results

Determination of the warfarin Ki specifically depends on measuring both substrate concentrations, both Michaelis constants for the VKORC1 enzyme, and pH in the assay.

Conclusion

The Ki is not equal to the IC50 value directly measured using the DTT-driven VKOR assay.

General significance

In contrast to warfarin IC50 values determined in previous studies, warfarin inhibition expressed as Ki can now be compared between studies, even when the specific DTT-driven VKOR assay conditions differ. This implies that warfarin inhibition reported for wild-type and variant VKORC1 enzymes from previous reports should be reassessed and new determinations of Ki are required to accurately report and compare in vitro warfarin inhibition results.  相似文献   

12.
A daily dose of vitamin K antagonists (VKAs) may vary and its range depends on various interrelated factors. Low responsiveness to VKA (defined as a failure to achieve a target international normalized ratio [INR]) is associated with polymorphisms of the vitamin K epoxide reductase-oxidase complex gene (VKORC1). A highly prevalent promoter single-nucleotide polymorphism (VKORC1−1639 G>A, rs 17878363) impairsVKORC1 expression and determines the interindividual variability of the target INR. We studied 57 patients receiving oral anticoagulation, including 50 subjects treated with acenocoumarol (mean dose: 5.7±2.3 mg/day) and 7 treated with warfarin (mean dose: 9.6±4.2 mg/day). The indications for the use of oral anticoagulant therapy were as follows: deep-vein thrombosis (N = 23); pulmonary embolism (N = 20); arterial thrombosis (N = 5); stroke (N = 4); atrial fibrillation with transient ischemic attacks (N = 2), and history of multiple thromboembolic events (N = 3). Identification of theVKORC1 genomic variation was performed using DNA sequencing methods. The prevalence of the mutated allele (VKORC1-1639A) was 41%. TheVKORC1-1639G allele carriers required a higher daily dose of acenocoumarol (5.9±1.9 mg) than the noncarriers (4.1±3.3 mg;P < 0.001). All of 5 low responders (who failed to achieve a target INR using standard dose requirements of VKAs) were homozygous for the 1639G allele. Low responders did not differ from good responders with respect to age, gender, and body mass index. Our findings suggest the potential benefits from pharmacogenetic testing, and provide evidence that theVKORC1 −1639 G>A gene polymorphism may explain at least in part the low responsiveness to acenocoumarol.  相似文献   

13.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   

14.
The secondary metabolites that play a defensive role in plants not only affect the growth and development of herbivores, but they can also influence their natural enemies. In the present study, the effect of coumarin was evaluated on a braconid parasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae) using polyphagous pest, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Reproductive potential of the parasitoid declined significantly due to parasitization of host larvae feeding on coumarin supplemented diet. Total development period of B. hebetor extended significantly (2.17–2.38 days) when the host larvae were reared on diet amended with higher concentrations (625–3,125 parts per million) of coumarin as compared to unamended diet. Ingestion of coumarin supplemented diet by S. litura adversely affected the emergence and parasitization potential of B. hebetor. As compared to the control a significant decline in hatching of eggs was recorded when parasitoid wasps developed on host larvae fed on diet containing higher concentrations of coumarin (625–3,125 ppm). Negative effects of coumarin were also recorded from the next generation of the parasitoid.  相似文献   

15.
Optimal antithrombotic management of atrial fibrillation equals balancing between prevention of arterial thromboembolism, predominantly ischaemic stroke, and haemorrhagic complications. Over time different antithrombotic agents and strategies have been developed. At present, non-vitamin K antagonist oral anticoagulants (NOACs) are the first-line therapy for stroke prevention in patients with non-valvular atrial fibrillation (i.e. without a mechanical valve prosthesis or rheumatic heart disease). Considering the impact of the suboptimal adoption of recommended oral anticoagulant therapy, as experienced with the previous first-line vitamin K antagonists, this review focuses on adequate use of NOACs. As such, we address the most important and clinically challenging issues in the antithrombotic life cycle management for long-term stroke prevention in atrial fibrillation.  相似文献   

16.
《Endocrine practice》2013,19(6):1043-1049
ObjectiveTo review the literature regarding the interaction among amiodarone therapy, thyroid hormone levels, and warfarin metabolism.Methods73-year-old male with type 2 after describing an unusual case of amiodarone-induced thyrotoxicosis (AIT) who experienced a severe rise in international normalized ratio (INR) values after initiating warfarin therapy due to an unusual combination of excessive thyroid hormones, amiodarone therapy, and a genetic abnormality affecting warfarin metabolism.ResultsGenetic analysis revealed that the patient was CYP2C9*2 wild-type, CYP2C9*3/*3 homozygous mutant, and VKORC1*3/*3 homozygous mutant. A review of the literature revealed that both mutations can independently affect warfarin metabolism. In addition, amiodarone therapy and the presence of thyrotoxicosis per se can affect warfarin metabolism and reduce the dose needed to maintain INR in the therapeutic range. The association of the 2 genetic polymorphisms in a patient with AIT is extremely rare and strongly impairs warfarin metabolism, exposing the patient to a high risk of overtreatment.ConclusionsIn patients with AIT, warfarin therapy should be gradually introduced, starting with a very low dose, because of the significant risk of warfarin overtreatment. Whether the genetic analysis of CYP2C9 and VKORC1 polymorphisms should be routinely performed in AIT patients remains conjectural. (Endocr Pract. 2013; 19:1043-1049)  相似文献   

17.
Inconsistent associations with warfarin dose were observed in genetic variants except VKORC1 haplotype and CYP2C9*3 in Chinese people, and few studies on warfarin dose algorithm was performed in a large Chinese Han population lived in Northern China. Of 787 consenting patients with heart-valve replacements who were receiving long-term warfarin maintenance therapy, 20 related Single nucleotide polymorphisms were genotyped. Only VKORC1 and CYP2C9 SNPs were observed to be significantly associated with warfarin dose. In the derivation cohort (n = 551), warfarin dose variability was influenced, in decreasing order, by VKORC1 rs7294 (27.3%), CYP2C9*3(7.0%), body surface area(4.2%), age(2.7%), target INR(1.4%), CYP4F2 rs2108622 (0.7%), amiodarone use(0.6%), diabetes mellitus(0.6%), and digoxin use(0.5%), which account for 45.1% of the warfarin dose variability. In the validation cohort (n = 236), the actual maintenance dose was significantly correlated with predicted dose (r = 0.609, P<0.001). Our algorithm could improve the personalized management of warfarin use in Northern Chinese patients.  相似文献   

18.
Coumarin is a highly active allelopathic compound which plays a key role in plant–plant interactions and communications. It affects root growth and development of many species, but its mode of action has not been clarified yet. It has been hypothesized that auxin could mediate coumarin-induced effects on root system. Through morphological and pharmacological approaches together with the use of Arabidopsis auxin mutants, a possible interaction between coumarin and auxin in driving root system development has been investigated in Arabidopsis thaliana (Col-0). Coumarin strongly affected primary root elongation and lateral root development of Arabidopsis seedlings. In particular, 10?4 M coumarin significantly inhibited primary root elongation increasing lateral root number and root hairs length. Further, coumarin addition was able to restore the negative effects of TIBA and NPA, two auxin transport inhibitors, which caused a complete inhibition of lateral root formation. Arabidopsis auxin mutants differently responded to coumarin compared to wild type (Col-0). In particular, lax3 mutant showed the lowest (42 %) inhibition of primary root length, whereas, eir1-4 mutant had higher inhibition (53 %) compared to Col-0; conversely, aux1-22 mutant did not show any effect in response to coumarin. An increase of lateral root number was observed in pin1 mutant only. Finally, coumarin increased the root hairs length in eir1-4, lax3, pin1 and pin3-5 mutants, but not in aux1-22. These results suggested a functional interaction between coumarin and auxin polar transport in driving root development in A. thaliana.  相似文献   

19.
CYP102A5 variant (ADL27534) from isolated Bacillus cereus CYPPB-1 was heterologously expressed in Escherichia coli Top 10 cells. Comparative sequence analysis of purified CYP102A5 variant with respect to reported CYP102A5 (AAP10153) from Bacillus cereus ATCC 14579 revealed amino acid sequence changes at positions P245S and M318I of heme domain. The binding affinities of 15 selected human P450 probe substrates towards isolated CYP102A5 were analyzed in silico using a homology model together with molecular docking techniques to predict the human drug metabolism. In vitro analysis suggested that the purified CYP102A5 metabolizes typical substrates of human CYP2C9, CYP2D6, CYP2E1, and CYP3A4, such as coumarin, propranolol, aniline, chlorzoxazone, p-nitrophenol, and nifedipine. The calculated K M values for propranolol, chloroxazone, coumarin, aniline, and 4-nitrophenol were calculated to be 0.962?±?0.041, 1.254?±?0.057, 2.859?±?0.083, 2.732?±?0.106, and 2.528?±?0.11 mM, respectively. Importantly, taking a ChemScore cutoff value of ?31 kJ/mol, substrate binding at active site and in vitro activity as the distinguishing lines between “substrates” and “nonsubstrates” revealed one false-positive and one false-negative results out of the 15 compounds examined. This is the first report on validation of CYP102A family homology model for in silico prediction of human drug metabolism.  相似文献   

20.
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号