首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bitter taste, in humans, is sensed by 25 G protein-coupled receptors, referred to as bitter taste receptors (T2Rs). The diverse roles of T2Rs in various extraoral tissues have implicated them as a potential target for therapeutic intervention. Structure–function studies have provided insights into the role of transmembrane and loop regions in the activation mechanism of T2Rs. However, studies aimed at deciphering the role of their carboxyl-terminus (C-terminus) are limited. In this study, we identified a KLK/R motif in the C-terminus that is conserved in 19 of the 25 T2Rs. Using site-directed mutagenesis we studied the role of 16 residues in the C-terminus of T2R4. The C-terminus of T2R4 is polybasic with 6 of the 16 residues consisting of lysines, constituting two separate KK motifs. We analyzed the effect of the C-terminus mutations on plasma membrane trafficking, and characterized their function in response to the T2R4 agonist quinine. The majority of the mutants showed defective receptor trafficking with ≤ 50% expression on the cell surface. Interestingly, mutation of the distal Lys296 of the KLK motif in T2R4 resulted in constitutive activity. The K296A mutant displayed five-fold basal activity over wild type T2R4, while the conservative substitution K296R showed wild type characteristics. The Lys294, Leu295 and Lys296 of the KLK motif in T2R4 were found to perform crucial roles, both, in receptor trafficking and function. Results from this study provide unique mechanistic insights into the structure–function role of the C-terminus in T2R signaling.  相似文献   

2.
Bacillus subtilis inorganic pyrophosphatase is the first member of a newly identified Family II of PPases. To examine the role of a signature sequence found near the C-terminus, two truncated variants and a series of site-specific mutants were produced. A truncation of 17 residues (17AATR) but also single alanine substitutions, R295A and K296A, produced inactive enzyme. Removal of 5 nonconserved terminal residues (5AATR) markedly affected enzyme stability. Replacing S294 with A, T, C, or V decreased activity, the latter two mutations showing the greatest effect. Substitutions V299I and V300I had no or minor effects, whereas V300W and V299G/V300W significantly reduced activity. The sizes of truncated proteins and the full-length PPase were indistinguishable by gel-filtration. We conclude that the C-terminus has no role in multimerization, while both its conserved and nonconserved regions are essential for full enzyme activity. The signature sequence is required for both the conformation and composition of the active site.  相似文献   

3.
The ankyrin transient receptor potential channel TRPA1 is a non-selective cationic channel that is expressed by sensory neurons, where it can be activated by pungent chemicals, such as AITC (allyl isothiocyanate), cinnamon or allicin, by deep cooling (<18?°C) or highly depolarizing voltages (>+100 mV). From the cytoplasmic side, this channel can be regulated by negatively charged ligands such as phosphoinositides or inorganic polyphosphates, most likely through an interaction with as yet unidentified positively charged domain(s). In the present study, we mutated 27 basic residues along the C-terminal tail of TRPA1, trying to explore their role in AITC- and voltage-dependent gating. In the proximal part of the C-terminus, the function-affecting mutations were at Lys969, Arg975, Lys988 and Lys989. A second significant region was found in the predicted helix, centred around Lys1048 and Lys1052, in which single alanine mutations completely abolished AITC- and voltage-dependent activation. In the distal portion of the C-terminus, the charge neutralizations K1092A and R1099A reduced the AITC sensitivity, and, in the latter mutant, increased the voltage-induced steady-state responses. Taken together, our findings identify basic residues in the C-terminus that are strongly involved in TRPA1 voltage and chemical sensitivity, and some of them may represent possible interaction sites for negatively charged molecules that are generally considered to modulate TRPA1.  相似文献   

4.
The peptide denoted K159 (30 residues) derives from the catalytic core (CC) sequence of HIV-1 integrase (IN, residues 147-175). In the crystal structure of CC, the corresponding segment belongs to the alpha4 helix (residues 148-168, including residues Glu 152, Lys 156 and Lys 159, crucial for enzyme activity and DNA recognition), a loop (residues 169-171) and a part of the alpha5 helix (171-175), involved in enzyme dimerization. We used the fluorescence and the circular dichroism (CD) properties in the near-UV of the aromatic side chain of a tyrosine residue added at the C-terminal end of K159 in order to analyze the behavior of the concentrated and diluted peptide in aqueous trifluoroethanol (TFE), in an attempt to connect the information obtainable at high (NMR), medium (CD) and low (fluorescence) concentrations of the peptide. Altogether, the C-terminal tyrosine residue provided indirect information on the global conformation of K159 and on the local orientation and environment of the residue. The propensity of TFE to stabilize alpha-helical conformations in peptides was confirmed in CD and fluorescence experiments at relatively high (20-160 microM) and low (2-16 microM) concentrations, respectively. At relatively high concentration, stabilization of the peptide into alpha-helical conformation favored its auto-association likely in parallel coiled-coil dimers, as pointed out in our previous work [Eur. J. Biochem. 253 (1998) 236]. This was further confirmed by ANS (1-anilinonaphtalene-8-sulfonic acid) analysis and fluorescence temperature coefficient measurement. With diluted K159, a Stern-Volmer analysis with positively and negatively charged quenchers indicated that, when the intermolecular interactions were absent, the tyrosine was in a positively charged environment, as if the peptide folded into a U-shaped conformation similar to that present in the crystal structure of the enzyme.  相似文献   

5.
Kozachkov L  Herz K  Padan E 《Biochemistry》2007,46(9):2419-2430
The 3D structure of Escherichia coli NhaA, determined at pH 4, provided the first structural insights into the mechanism of antiport and pH regulation of a Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 7.0-8.5), many questions pertaining to the active state of NhaA have remained open, including the physiological role of helix X. Using a structural-based evolutionary approach in silico, we identified a segment of most conserved residues in the middle of helix X. These residues were then used as targets for functional studies at physiological pH. Cysteine-scanning mutagenesis showed that Gly303, in the middle of the conserved segment, is an essential residue and Cys replacement of Lys300 retains only Li+/H+ antiporter activity, with a 20-fold increase in the apparent KM for Li+. Cys replacements of Leu296 and Gly299 increase the apparent KM of the Na+/H+ antiporter for both Na+ and Li+. Accessibility test to N-ethylmaleimide and 2-sulfonatoethyl methanethiosulfonate showed that G299C, K300C, and G303C are accessible to the cytoplasm. Suppressor mutations and site-directed chemical cross-linking identified a functional and/or structural interaction between helix X (G295C) and helix IVp (A130C). While these results were in accordance with the acid-locked crystal structure, surprisingly, conflicting data were also obtained; E78C of helix II cross-links very efficiently with several Cys replacements of helix X, and E78K/K300E is a suppressor mutation of K300E. These results reveal that, at alkaline pH, the distance between the conserved center of helix X and E78 of helix II is drastically decreased, implying a pH-induced conformational change of one or both helices.  相似文献   

6.
The sequence SRKKQxxP near the C-terminus is conserved in pyrophosphatases of the recently discovered family II and includes a triplet of positively charged residues, two of which (Arg295 and Lys296 in Bacillus subtilis pyrophosphatase) are part of the active site and one (Lys297) is not. The importance of this triplet for catalysis by B. subtilis pyrophosphatase has been estimated by mutational analysis. R295K and K296R substitutions were found to decrease the catalytic constant 650- and 280-fold, respectively, and decrease the pK(a) of the essential acidic group by 1.1 and 0.5, respectively. K297R substitution was found to increase the catalytic constant 4.7-fold and to markedly change the protein circular dichroism spectrum in the range 250-300 nm. These results, together with the results of theoretical modelling of the enzyme-substrate complex, provide support for the direct involvement of Arg295 and Lys296 in substrate binding in family II pyrophosphatases.  相似文献   

7.
The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs.  相似文献   

8.
The structure of a chromosomal extended-spectrum beta-lactamase (ESBL) having the ability to hydrolyze cephalosporins including cefuroxime and ceftazidime has been determined by X-ray crystallography to 1.75 A resolution. The species-specific class A beta-lactamase from Proteus vulgaris K1 was crystallized at pH 6.25 and its structure solved by molecular replacement. Refinement of the model resulted in crystallographic R and R(free) of 16.9 % and 19.3 %, respectively. The folding of the K1 enzyme is broadly similar to that of non-ESBL TEM-type beta-lactamases (2 A rmsd for C(alpha)) and differs by only 0.35 A for all atoms of six conserved residues in the catalytic site. Other residues promoting extended-spectrum activity in K1 include the side-chains of atypical residues Ser237 and Lys276. These side-chains are linked by two water molecules, one of which lies in the position normally filled by the guanidinium group of Arg244, present in most non-ESBL enzymes but absent from K1. The ammonium group of Lys276, ca 3.5 A from the virtual Arg244 guanidinium position, may interact with polar R2 substitutents on the dihydrothiazene ring of cephalosporins.  相似文献   

9.
Shovanlal Gayen 《FEBS letters》2010,584(4):713-718
The C-terminal residues 98-104 are important for structure stability of subunit H of A1AO ATP synthases as well as its interaction with subunit A. Here we determined the structure of the segment H85-104 of H from Methanocaldococcus jannaschii, showing a helix between residues Lys90 to Glu100 and flexible tails at both ends. The helix-helix arrangement in the C-terminus was investigated by exchange of hydrophobic residues to single cysteine in mutants of the entire subunit H (HI93C, HL96C and HL98C). Together with the surface charge distribution of H85-104, these results shine light into the A-H assembly of this enzyme.  相似文献   

10.
11.
Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R. H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783-791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence.  相似文献   

12.
We have used backbone N-methylations of parathyroid hormone (PTH) to study the role of these NH groups in the C-terminal amphiphilic alpha-helix of PTH (1-31) in binding to and activating the PTH receptor (P1R). The circular dichroism (CD) spectra indicated the structure of the C-terminal alpha-helix was locally disrupted around the methylation site. The CD spectra differences were explained by assuming a helix disruption for four residues on each side of the site of methylation and taking into account the known dependence of CD on the length of an alpha-helix. Binding and adenylyl cyclase-stimulating data showed that outside of the alpha-helix, methylation of residues Asp30 and Val31 had little effect on structure or activities. Within the alpha-helix, disruption of the structure was associated with increased loss of activity, but for specific residues Val21, Leu24, Arg25, and Leu28 there was a dramatic loss of activities, thus suggesting a more direct role of these NH groups in correct P1R binding and activation. Activity analyses with P1R-delNT, a mutant with its long N-terminal region deleted, gave a different pattern of effects and implicated Ser17, Trp23, and Lys26 as important for its PTH activation. These two groups of residues are located on opposite sides of the helix. These results are compatible with the C-terminal helix binding to both the N-terminal segment and also to the looped-out extracellular region. These data thus provide direct evidence for important roles of the C-terminal domain of PTH in determining high affinity binding and activation of the P1R receptor.  相似文献   

13.
Protein methylation is one of the most important post-translational modifications that contribute to the diversity and complexity of proteome. Here we report the study of in vitro methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) with protein arginine methyltransferase 1 (PRMT1), as an enzyme, and S-adenosyl-l-methionine (SAM), as a methyl donor. The mass analysis of tryptic peptides of hnRNP K before and after methylation reveals the addition of four methyl groups in the residues 288–303. Tandem mass-spectrometric analysis of this peptide shows that both Arg296 and Arg299 are dimethylated. In addition, fragmentation analysis of such methylated arginines illustrate that they are both asymmetric dimethylarginines. Since Arg296 and Arg299 are located near the SH3-binding domains of hnRNP K, such methylation has the potential in regulating the interaction of hnRNP K with Src protein family. Our results provide crucial information for further functional study of hnRNP K methylation.  相似文献   

14.
The dimeric interface of severe acute respiratory syndrome coronavirus main protease is a potential target for the anti-SARS drug development. We have generated C-terminal truncated mutants by serial truncations. The quaternary structure of the enzyme was analyzed using both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Global analysis of the combined results showed that truncation of C-terminus from 306 to 300 had no appreciable effect on the quaternary structure, and the enzyme remained catalytically active. However, further deletion of Gln-299 or Arg-298 drastically decreased the enzyme activity to 1-2% of wild type (WT), and the major form was a monomeric one. Detailed analysis of the point mutants of these two amino acid residues and their nearby hydrogen bond partner Ser-123 and Ser-139 revealed a strong correlation between the enzyme activity loss and dimer dissociation.  相似文献   

15.
1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket.  相似文献   

16.
Alyteserin-1c (GLKEIFKAGLGSLVKGIAAHVAS.NH(2)), first isolated from skin secretions of the midwife toad Alytes obstetricans, shows selective growth-inhibitory activity against Gram-negative bacteria. The structures of alyteserin-1c and its more potent and less haemolytic analogue [E4K]alyteserin-1c were investigated in various solution and membrane mimicking environments by proton NMR spectroscopy and molecular modelling. In aqueous solution, the peptide displays a lack of secondary structure but, in a 2,2,2-trifluoroethanol (TFE-d(3))-H(2)O solvent mixture, the structure is characterised by an extended alpha helix between residues Leu(2) and Val(21). Solution structural studies in the membrane mimicking environments, sodium dodecyl sulphate (SDS), dodecylphosphocholine (DPC), and 1,2-dihexanoyl-sn-glycero-3-phosphatidylcholine (DHPC) micelles, indicate that these peptides display an alpha helical structure between residues Lys(3) and Val(21). Positional studies of the peptides in SDS, DPC and DHPC media show that the N-terminal and central residues lie inside the micelle while C-terminal residues beyond Ala(19) do not interact with the micelles.  相似文献   

17.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs [H(X)K(X)4D, denoted HKD] located at the N-terminal and C-terminal halves, which are required for activity. Association of the two halves is essential for rPLD1 activity, which probably brings the two HKD domains together to form a catalytic center. In the present study, we find that an intact C-terminus is also essential for the catalytic activity of rPLD1. Serial deletion of the last four amino acids, EVWT, which are conserved in all mammalian PLD isoforms, abolished the catalytic activity of rPLD1. This loss of catalytic activity was not due to a lack of association of the N-terminal and C-terminal halves. Mutations of the last three amino acids showed that substitutions with charged or less hydrophobic amino acids all reduced PLD activity. For example, mutations of Thr1036 and Val1034 to Asp or Lys caused marked inactivation, whereas mutation to other amino acids had less effect. Mutation of Trp1035 to Leu, Ala, His or Tyr caused complete inactivation, whereas mutation of Glu1033 to Ala enhanced activity. The size of the amino acids at the C-terminus also affected the catalytic activity of PLD, reduced activity being observed with conservative mutations within the EVWT sequence (such as T/S, V/L or W/F). The enzyme was also inactivated by the addition of Ala or Val to the C-terminus of this sequence. Interestingly, the inactive C-terminal mutants could be complemented by cotransfection with a wild-type C-terminal half to restore PLD activity in vivo. These data demonstrate that the integrity of the C-terminus of rPLD1 is essential for its catalytic activity. Important features are the hydrophobicity, charge and size of the four conserved C-terminal amino acids. It is proposed that these play important roles in maintaining a functional catalytic structure by interacting with a specific domain within rPLD1.  相似文献   

18.
Predictions of tertiary structures of proteins from their amino acid sequences are facilitated greatly when the structures of homologous proteins are known. On this basis, structural features of Escherichia coli ornithine transcarbamoylase (OTCase) were investigated by site-directed mutagenesis experiments based on the known tertiary structure of the catalytic (c) chain of E. coli aspartate transcarbamoylase (ATCase). In ATCase, each c chain is composed of two globular domains connected by two interdomain helices, one of which is near the C-terminus and is critical for the in vivo folding of the chains and their assembly into trimers. Each active site is located at the interface between two chains and requires the participation of residues from each of the adjacent chains. OTCase, a trimeric enzyme, has been proposed to be similar in structure to the ATCase trimer on the basis of sequence identity (32%), the nature of the reaction catalyzed by the enzyme, and secondary structure predictions. As shown here, analysis of OTCase and ATCase sequences revealed extensive evolutionary conservation in portions corresponding to the ATCase active site and the C-terminal helix. Truncations and substitutions within the predicted C-terminal helix of OTCase had effects on activity and thermal stability strikingly similar to those caused by analogous alterations in ATCase. Similarly, substitutions at either of two conserved residues, Ser 55 and Lys 86, in the proposed active site of OTCase had deleterious effects parallel to those caused by the analogous ATCase substitutions. Hybrid trimers comprised of chains from both these relatively inactive OTCase mutants exhibited dramatically increased activity, as predicted for shared active sites located at the chain interfaces. These results strongly support the hypothesis that the tertiary and quaternary structures of the two enzymes are similar.  相似文献   

19.
The enzyme which converts 1-aminocyclo-propane-1-carboxylic acid (ACC) into ethylene, ACC oxidase, has been isolated from apple fruits (Malus x domestica Borkh. cv. Golden Delicious), and for the first time stabilized in vitro by 1,10-phenanthroline and purified 170-fold to homogeneity in a five-step procedure. The sodium dodecyl sulfate-denatured and native proteins have similar molecular weights (approx. 40 kDa) indicating that the enzyme is active in its monomeric form. Antibodies raised against a recombinant ACC oxidase over-produced in Escherichia coli from a tomato cDNA recognise the apple-fruit enzyme with high specificity in both crude extracts and purified form. Glycosylation appears to be absent because of (i) the lack of reactivity towards a mixture of seven different biotinylated lectins and (ii) the absence of N-linked substitution at a potential glycosylation site, in a sequenced peptide. Phenylhydrazine and 2-methyl-1-2-dipyridyl propane do not inhibit activity, indicating that ACC oxidase is not a prosthetic-heme iron protein. The partial amino-acid sequence of the native protein has strong homology to the predicted protein of a tomato fruit cDNA demonstrated to encode ACC oxidase.  相似文献   

20.
The methionine adenosyltransferase (MAT; EC 2.5.1.6) mediated synthesis of S-adenosylmethionine (AdoMet) is a two-step process, consisting of the formation of AdoMet and the subsequent cleavage of the tripolyphosphate (PPPi) molecule, a reaction induced, in turn, by AdoMet. The fact that the two activities--AdoMet synthesis and tripolyphosphate hydrolysis--can be measured separately is particularly useful when the site-directed mutagenesis approach is used to determine the functional role of the amino acid residues involved in each. This report describes the mutational analysis of the amino acids involved in both the ATP and L-methionine binding sites of Leishmania donovani MAT (GenBank accession number AF179714) the aetiological agent of visceral leishmaniasis. Site-directed mutagenesis was used to substitute neutral residues for the basic amino acid (Lys168, Lys256, Lys276, Lys280 and His17), acidic residues (Asp19, Asp121, Asp166, Asp249, Asp277 and Asp288) and Phe241 involved in AdoMet synthesis and PPPi hydrolysis. With the exception of D116N, none of these mutants was able to synthesize AdoMet at a significant rate, although H17A, H17N, K256A, K280A, D19N, D121N, D166N, D249N and D282N showed measurable tripolyphosphatase activity. Finally, the C-terminus domain of L. donovani MAT was truncated at three points (F382Stop, D375Stop, F368Stop), deleting a 3(10) one-turn helix motif in all three cases. Whilst none of the truncated proteins conserved MAT activity, they were able to hydrolyse PPPi, albeit at a lower rate than the wild-type enzyme. A fourth protein with an internal deletion (E376DeltaF382) in the C-terminal domain conserved high tripolyphosphatase activity, which was not, however, induced by 50 microM AdoMet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号