首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Häder  Donat-P.  Porst  Markus  Santas  Regas 《Plant Ecology》1998,139(2):167-175
Photoinhibition of photosynthesis, defined as reversible decrease in the effective photosynthetic quantum yield, was measured in the Mediterranean red alga, Peyssonnelia squamata, using pulse amplitude modulation (PAM) chlorophyll fluorescence and oxygen production on site. This alga is adapted to very low fluence rates of solar radiation and is easily inhibited by exposure to excessive radiation. At high solar angles its photosynthetic capacity is impaired even in its natural habitat, in the protective shade of overhanging rocks. Oxygen production was maximal at 5 m depth and decreased to almost zero at the surface. When exposed at the surface oxygen production ceased within 16 min. The optimal photosynthetic quantum yield, defined as Fv/Fm, was about 0.45 in dark-adapted specimens. After 30 min of exposure to unattenuated solar radiation the (effective, Fv/Fm) quantum yield decreased to below 0.1. Removing solar UV (especially UV-B) significantly reduced photoinhibition: the quantum yield of a sample exposed under a UV-B cut-off filter was double that of a sample exposed to full solar radiation after 30 min exposure. Recovery from photoinhibition took several hours and was not complete after prolonged exposure (1.5 h) to direct solar radiation. The degree of photoinhibition depended on the depth at which the thalli were exposed. Recovery from photoinhibition was complete within 2 h except when the algae were exposed at the surface. When measured over the whole day, the effective photosynthetic quantum yield significantly decreased by about 25% from initially high values toward early afternoon and rose again towards evening. The data indicate that this alga is adapted to very low irradiances and is easily inhibited by excessive solar radiation; solar UV contributes substantially to the observed photoinhibition.  相似文献   

2.
A review is presented of the physiological mechanisms developed bybenthic macroalgae to cope with deleterious wavelengths, particularly UVradiation. Photoinhibition of photosynthesis, is a photoprotectivemechanism in various species studied in southern Spain. Incubations inoutdoor systems and transplantation experiments under natural radiationallowed to led to understanding of some the photoprotective strategies usedby red algae. Under conditions of enhanced UV-B radiation, algae inshallow sites show marked photoinhibition and rapid recovery ofphotosynthesis (dynamic photoinhibition), whereas algae from deeperlocations can suffer photodamage (chronic photoinhibition). Theexpression of this photoprotective strategy by intertidal species representsan efficient physiological adaptation to tolerate deleterious irradiance, whenlow tides coincide with the onset of solar radiation. Subtidal species canbe also exposed to high doses of UV radiation. This is particularly evidentin clear, Mediterranean waters, where light (including UV-B) can reach to10 m depth. The implications of photoacclimation processes formacroalgal ecology in warm-temperate littorals and the possibleconsequences for outdoor cultivation are outlined in terms of environmentalUV variability.  相似文献   

3.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

4.
Photosynthetic oxygen production and PAM fluorescence measurements were used to follow photoinhibition in the red macroalga Porphyra umbilicalis. Exposure to simulated solar radiation caused inhibition of the effective photosynthetic quantum yield from which the thalli partially recovered in the shade in subsequent hours. There were no significant differences between samples exposed to unfiltered radiation and those exposed to radiation from which increasing portions of UV radiation had been removed indicating that the thalli are well adapted to current levels of solar PAR and UV radiation. This notion was supported by the finding of high concentrations of UV screening pigments which were even enhanced by exposure to increased UV radiation. However, when exposed to (only) UV radiation about 50% higher than that encountered by the organisms in their natural habitat, the photosynthetic yield decreased slowly and did not show any recovery even when the degree of inhibition did not exceed 10%.  相似文献   

5.
The photosynthetic quantum yield was analysed in four common atlantic macroalgae, the Rhodophytes Gelidium arbuscula and Halopithys incurvus and the Phaeophytes Halopteris scoparia and Lobophora variegata in Gran Canaria, Canary Islands at their growth site. The fluorescence parameters were measured using a portable pulse amplitude modulated (PAM) fluorometer (PAM 2000) instrument and a diving PAM under water without removing the thalli from their growth sites. Solar radiation was monitored continuously above and under water during the whole experimental period using two three-channel dosimeters (European light dosimeter network; ELDONET) (Real Time Computer, M?hrendorf, Germany). These instruments measure solar radiation in three wavelength ranges, ultraviolet (UV)-A, UV-B and photosynthetic active radiation (PAR). In all four algae the effective photosynthetic quantum yield decreased significantly from the optimal values measured after dark adaptation due to exposure to 15 min solar radiation, but at least partially recovered subsequently in the shade within several hours. Increasing the exposure period to 30 min intensified the photoinhibition. In some algae no recovery was observed after this treatment and in others no significant recovery could be detected. Exposure to unfiltered solar radiation caused a significantly higher photoinhibition than PAR-only radiation or PAR plus UV-A. A substantial inhibition was found in all algae at their growth sites in the water column when the sun was at high angles, as measured with the diving PAM. Received in revised form: 15 May 2000 Electronic Publication  相似文献   

6.
The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight.  相似文献   

7.
Experiments were conducted under greenhouse conditions to investigate the effects of enhanced UV-B radiation (280 to 320 nm) on height, fresh and dry weights, leaf chlorophyll and carotenoids, CO2 uptake rates, and Hill activity in soybean ( Glycine max L. cv. Bragg). Plants were exposed for 6 h continuously from midmorning to midafternoon each day to UV-B radiation which was provided by Westinghouse FS-40 sun lamps filtered with 0.127-mm cellulose acetate film (UV-B enhanced) or 0.127-mm Mylar S film (UV-B Mylar control). Three different UV-B enhanced radiation levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-B sun equivalent units (UV-Bsec) where 1 UV-Bsec= 15.98 mW·m−2 of solar UV-B obtained by applying EXP -[(α-265)/21]2, a weighting function that simulates the DNA absorption spectrum, to the UV-B lamp systems. These UV-B levels correspond to a calculated decrease in stratospheric ozone content of 6%, 21%, and 36% for treatment T1, T2, and T3, respectively.
Daily exposure of soybean plants to UV-B radiation significantly decreased height, fresh and dry weights, leaf chlorophyll and carotenoid contents, and CO2 uptake rates. Leaf pigment extracted in 80% acetone from UV-B-treated soybean plants showed considerable increase in absorption in the wavelength region of 330 to 400 nm with increased UV-B radiation levels. Chloroplast preparations from leaves of T2 and T3 plants showed significant reductions in Hill reaction measurements.  相似文献   

8.
Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A mechanism of UV-B-induced inhibition of photosynthesis under field conditions is proposed.  相似文献   

9.
Abstract The effects of solar irradiation on chlorophyll a fluorescence and photosynthetic oxygen production of three Cryptomonas species, Euglena gracilis and Scenedesmus cf. quadricauda were investigated in comparative field studies in Erlangen (280 m above sea level) and at Zugspitze (2957 m above sea level). The experiments showed that the decrease of fluorescence and the inhibition of photosynthetic oxygen production occurred after shorter times of exposure to solar radiation at Zugspitze compared to Erlangen in all tested organisms. Cryptomonas maculata was more sensitive towards radiation than the other organisms: fluorescence decreased earlier, while Scenedesmus cf. quadricauda seemed to be much less sensitive since fluorescence and photosynthetic oxygen production decreased later and to a smaller extent compared to the other organisms. The results of the present study indicate that increased solar radiation (with an increased level of UV-B radiation) at higher geographical altitudes may have significant effects on phytoplankton populations.  相似文献   

10.
Responses of aquatic algae and cyanobacteria to solar UV-B   总被引:4,自引:0,他引:4  
Sinha  Rajeshwar P.  Klisch  Manfred  Gröniger  Almut  Häder  Donat-P. 《Plant Ecology》2001,154(1-2):219-236
Continuous depletion of the stratospheric ozone layer has resulted in an increase in solar ultraviolet-B (UV-B; 280–315 nm) radiation reaching the Earth's surface. The consequences for aquatic phototrophic organisms of this small change in the solar spectrum are currently uncertain. UV radiation has been shown to adversely affect a number of photochemical and photobiological processes in a wide variety of aquatic organisms, such as cyanobacteria, phytoplankton and macroalgae. However, a number of photosynthetic organisms counteract the damaging effects of UV-B by synthesizing UV protective compounds such as mycosporine-like amino acids (MAAs) and the cyanobacterial sheath pigment, scytonemin. The aim of this contribution is to discuss the responses of algae and cyanobacteria to solar UV-B radiation and the role of photoprotective compounds in mitigating UV-B damage.  相似文献   

11.
Photosynthetic performance was determined in three common Atlantic brown macroalgae, Cystoseira abies-marina, Dictyota dichotoma and Sargassum vulgare, in Gran Canaria, Canary Islands, on site. The photosynthetic quantum yield was measured with both a portable PAM instrument on site and a diving PAM under water in the habitat. In parallel, solar radiation was measured continuously above and under water by means of two three-channel dosimeters, ELDONET (Real Time Computer, M?hrendorf, Germany), in three wavelength ranges, UV-A, UV-B and PAR. The effective photosynthetic quantum yield decreased in all species in response to exposure to 15 min of solar radiation but recovered in the subsequent shade conditions within several hours. A 30-min exposure caused an even more profound photoinhibition from which the algae recovered only partially. Most of the effect was due to visible radiation, however, the UV wavelength range, and especially UV-B, considerably enhanced the decrease in photosynthetic quantum yield. In all species except Sargassum a significant photoinhibition was detected at their growth sites at high solar angles in the water column, measured with the diving PAM.  相似文献   

12.
The effects of solar radiation and artificial UV irradiation on motility and pigmentation were studied in the flagellate system Cyanophora paradoxa. Both percentage of motile cells and average velocity decreased drastically after a solar exposure of a few hours. This effect was not due to an overheating since the cells were exposed under temperaturecontrolled conditions. Partial reduction of the UV-B radiation by cut-off filters or by insertion of an artificial ozone layer increased the tolerated exposure times. Artificial UV radiation also induced the same effects. Under both solar and artificial UV irradiation the photosynthetic pigments within the cyanelles were bleached also within short exposure times. Kinetics of pigment destruction showed that the accessory phycobilins are lost with a half life of 1.3 h while the chlorophylls had a half life of 33 h and a carotenoid with an absorption maximum at 480 nm of 17.3 h.  相似文献   

13.
Colorless phenylpropanoid derivatives are known to protect plants from ultraviolet (UV) radiation, but their photoregulation and physiological roles under field conditions have not been investigated in detail. Here we describe a fast method to estimate the degree of UV penetration into photosynthetic tissue, which is based on chlorophyll fluorescence imaging. In Arabidopsis this technique clearly separated the UV-hypersensitive transparent testa (tt) tt5 and tt6 mutants from the wild type (WT) and tt3, tt4, and tt7 mutants. In field-grown soybean (Glycine max), we found significant differences in UV penetration among cultivars with different levels of leaf phenolics, and between plants grown under contrasting levels of solar UV-B. The reduction in UV penetration induced by ambient UV-B had direct implications for DNA integrity in the underlying leaf tissue; thus, the number of cyclobutane pyrimidine dimers caused by a short exposure to solar UV-B was much larger in leaves with high UV transmittance than in leaves pretreated with solar UV-B to increase the content phenylpropanoids. Most of the phenylpropanoid response to solar UV in field-grown soybeans was induced by the UV-B component (lambda 相似文献   

14.
Abstract The effects of artificial and solar UV-B radiation on the gravitactic (formerly called geotactic) orientation of the freshwater dinoflagellate Peridinium gatunense were measured under artificial UV-B radiation and in a temperature-controlled growth chamber under solar radiation in Portugal. Circular histograms of gravitaxis show the impairement of orientation after UV irradiation. The degree of orientation, quantified using the Rayleigh test and top quadrant summation, decreased as the exposure time to the radiation prolonged. The effects of artifical UV-B radiation on orientation are stronger than those of solar radiation, probably because the radiation source emits higher fluence rates below 300 nm than found in solar radiation. After UV radiation, the gravitactic orientation under artificially increased acceleration at 2 g was drastically affected.  相似文献   

15.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

16.
Abstract The effects of tropical solar radiation on the motility of the cyanobacteria Anabaena variabilis, Oscillatoria tenuis and two strains of Phormidium uncinatum were studied in Ghana (4.30°N). The percentages of motile filaments were drastically reduced by unfiltered solar radiation. Covering the organisms with various long pass or band pass filters (WG320, GG395 or UG5) revealed that the UV-B, UV-A and visible light components of the solar spectrum were all effective in impairing motility in these organisms. Only partial recovery was observed and only after short exposure times.  相似文献   

17.
In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.  相似文献   

18.
Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.  相似文献   

19.
Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent.  相似文献   

20.
Abstract: Macroalgae of the upper sublittoral zone of Arctic coastal ecosystems are subjected to darkness or low light for several months during winter and have to withstand large changes in irradiance after the breakup of sea ice in the Arctic spring. Changes in photosynthetic response to high PAR (pho-tosynthetically active radiation) and UV-B radiation (UV-B) in the cold temperate brown alga A/aria esculenta were monitored with a PAM fluorometer to study photoinhibition, recovery and acclimation of maximal quantum yield of photochemistry. Plants collected in the field, as well as specimens raised in the laboratory, were exposed to various radiation conditions including different levels of PAR and UV radiation (UV-A + UV-B). Measurements of variable chlorophyll fluorescence of photosystem II revealed that the photosynthetic apparatus in A. esculenta was able to acclimate to the respective high light and UV treatments within several days. However, two different mechanisms of acclimation seem to be involved. Initially, the rate of recovery of maximal quantum yield increased after only a few exposures to high light or UV. Second, after several exposure cycles, the degree of inhibition was reduced. Data on fluorescence induction kinetics and quenching analysis showed that exposure to the respective UV radiation resulted in an increase of non-photochemical quenching, while effective quantum yield of photochemistry was hardly affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号