首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
G2 chromosomal radiosensitivity in Fanconi's anemia   总被引:6,自引:0,他引:6  
Both the peripheral lymphocytes from 4 patients affected with the inherited disease Fanconi's anemia (FA), and tissue-culture fibroblasts from skin biopsies from 3 patients similarly affected were found to be about twice as sensitive to the induction of chromatid-type chromosomal aberrations by X-rays administratered in the G2 phase of the cell cycle as cells from normal controls. Using tritiated thymidine labelling of peripheral lymphocytes and of cultured fibroblasts, it was determined that 3 affected patients and 3 normal controls all had similar percent labeled mitoses (PLM) curves, so the increased induced aberration yields seen in the FA cells do not appear to be simply a consequences of a longer than normal G2 phase of the cell cycle.  相似文献   

2.
Spontaneous and bleomycin (BLM)-induced chromosomal aberrations in G0 and G2 stages of the cell cycle have been analyzed in peripheral lymphocytes of 21 long-haul aircrew members from Argentina in order to assess BLM-induced clastogenesis as a first approach to determine the DNA repair capacity and thereby the susceptibility to environmental cancers in aircrew. The possibility that occupational exposure of flight personnel to cosmic radiation can induce an adaptive response in their peripheral lymphocytes that can be detected by a subsequent in vitro treatment with BLM was also investigated. For comparison, aberrations were also scored in the lymphocytes of 15 healthy volunteers matched by age, health, sex, drinking and smoking habits to the flight personnel group. Aircrew exhibited a higher frequency of spontaneous dicentrics and ring chromosomes than the control population (p<0.05). BLM sensitivity test showed that aircrew and controls are equally sensitive to BLM G2 clastogenic effects, since both groups exhibited a similar frequency of chromatid breaks per cell (p>0.05). However, the aircrew sampled population was almost two times more sensitive to BLM G0 clastogenic effects than controls (p<0.05). Therefore, our data suggest that chronic exposure of aircrew to cosmic radiation increases the in vitro chromosomal sensitivity of their peripheral lymphocytes to BLM (at least in the G0 stage of the cell cycle), and that occupational exposure of flight personnel to cosmic radiation does not induce an adaptive response to this radiomimetic compound. Our results justify further studies aimed at determine if those aircrew members hypersensitive to BLM are more prone to develop environmental cancer than BLM-insensitive individuals.  相似文献   

3.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

4.
Human lymphocytes were treated with combined UVC radiation and X-rays or they were X-irradiated and incubated for 60–90 min in the presence of DNA-repair inhibitor ara-C. The X-ray induced chromosome exchange aberration yield was enhanced both by UVC and ara-C by approximately a factor of two in the linear (low dose) portion of the dose-response curve. The enhancement was small in the dose squared (high dose) portion where previous dose-fractionation experiments have shown that X-ray-induced lesions leading to aberrations exist for several hours. The yield of aberrations in lymphocytes incubated after irradiation in the presence of ara-C reaches a saturation level almost immediately after irradiation (5–15 min). These cytogenetic observations together with a previous finding (Holmberg and Strausmanis, 1983) give direct and indirect evidence that the enhanced aberration yield is due to short-lived DNA breaks formed immediately after X-irradiation.

Measurements on the repair kinetics of the DNA breaks induced by X-irradiation show that ara-C strongly impairs the repair of short-lived X-ray-induced DNA breaks. It was also observed that the DNA breaks generated after UVC irradiation occur almost immediately after irradiation and the level of these transient DNA breaks reaches saturation even for short incubation times. Thus, the repair of these breaks can compete with the repair of short-lived X-ray-induced DNA-breaks in combined irradiation with UVC and X-rays.

The experimental results can be explained on the assumption that X-ray-induced aberrations originate from exchange complexes formed in interactions between both short-lived DNA breaks. The short-lived DNA breaks give rise to exchange complexes mainly within single ionization tracks where the DNA breaks are close together. The time between irradiation and exchange complex formation is of the order of 5–15 min within such a track, and short-lived breaks might be repaired before complexes have been formed. If the DNA repair of these breaks is delayed by UVC or ara-C treatment this results in a higher probability of exchange-complex formation. In contrast, interactions between breaks in different tracks originate from long-lived DNA breaks and the probability for complex formation from these breaks is not markedly affected by UVC or ara-C.  相似文献   


5.
Chromosomal mutagen sensitivity is a common feature of cells from patients with different kinds of cancer. A portion of breast cancer patients also shows an elevated sensitivity to the induction of chromosome damage in cells exposed to ionizing radiation or chemical mutagens. Segregation analysis in families of patients with breast cancer indicated heritability of mutagen sensitivity. It has therefore been suggested that mutations in low-penetrance genes which are possibly involved in DNA repair predispose a substantial portion of breast cancer patients. Chromosomal mutagen sensitivity has been determined with the G2 chromosome aberration test and the G(0) micronucleus test (MNT). However, there seems to be no clear correlation between the results from the two tests, indicating that the inherited defect leading to enhanced G(0) sensitivity is different from that causing G2 sensitivity. Less than 5% of breast cancer patients have a familial form of the disease due to inherited mutations in the breast cancer susceptibility genes BRCA1 or BRCA2. Heterozygous mutations in BRCA1 or BRCA2 in lymphocytes from women with familial breast cancer are also associated with mutagen sensitivity. Differentiation between mutation carriers and controls seems to be much better with the MNT than with the G2 assay. Mutagen sensitivity was detected with the MNT not only after irradiation but also after treatment with chemical mutagens including various cytostatics. The enhanced formation of micronuclei after exposure of lymphocytes to these substances suggests that different DNA repair pathways are affected by a BRCA1 mutation in accordance with the proposed central role of BRCA1 in maintaining genomic integrity. Mutations in BRCA1 and BRCA2 seem to predispose cells to an increased risk of mutagenesis and transformation after exposure to radiation or cytostatics. This raises a question about potentially increased risks by mammography and cancer therapy in women carrying a mutation in one of the BRCA genes. Lymphoblastoid cell lines (LCLs) from breast cancer patients have been used to study the mechanisms and genetic changes associated with tumorigenesis. With respect to mutagen sensitivity, conflicting results have been reported. In particular enhanced induction of micronuclei does not seem to be a general feature of LCLs with a BRCA1 mutation in contrast to lymphocytes with the same mutation. Therefore, LCLs are of limited utility for studying the mechanisms underlying chromosomal mutagen sensitivity.  相似文献   

6.
Cultured skin fibroblast cells from 6 patients with non-Hodgkin's lymphoma (NHL) and 2 clinically normal subjects were compared for cell survival and chromosomal aberration after chronic gamma-irradiation. Fibroblasts from an ataxia telangiectasia (AT) homozygote and an AT heterozygote were used as positive controls. Following irradiation, fibroblasts from all 6 NHL patients showed an increase in both cell death and chromosomal aberration (breaks and rearrangements) compared to the normal subjects. The difference in the frequency of chromosomal aberration between the normals and the NHL patients remained virtually unchanged over a period of 24-72 h post irradiation incubation of the cells. Cell cycle analysis by flow cytometry carried out in 1 normal and 1 NHL fibroblast cell strain showed that more cells representing the NHL patient were in G2/M phase compared to the normal at various times of cytogenetic analysis. While the AT homozygote appeared to be the most radiosensitive, the AT heterozygote showed a slightly higher incidence of cell death and chromosomal aberration than the normals. The cellular and chromosomal radiosensitivity of fibroblast cell lines from the NHL patients differed slightly from that of the AT heterozygote but clearly occupied an intermediate position between the AT homozygote and the normal subjects. Cells from 3 of the NHL patients showed radiation-induced specific chromosomal breaks involving chromosomes 1, 2, 6, 8, 10 and 11 which correspond to known fragile sites. Such breakpoints associated with increased radiosensitivity may be indicative of predisposition to malignancy in the patients studied.  相似文献   

7.
This mini-review summarises studies in this Institute on the sensitivity of cells of patients with common cancers to the chromosome-damaging effects of ionising radiation, in the context of related studies. Using the 90th percentile of healthy controls (n >200) as the cut-off point between a normal and a sensitive response, 40% of patients with breast cancer (n = 166) were sensitive when cells were irradiated in the G2 phase of the cell cycle. Smaller studies showed that patients with colorectal, head and neck (at < 45 years) and childhood cancers also exhibited degrees of enhanced sensitivity, whereas cervical and lung cancer cases did not. Cells from breast and head and neck cases irradiated in G(0) also showed increased sensitivity. We propose that such elevated sensitivity is a marker of low penetrance predisposition to cancer. The strongest support for this hypothesis was our demonstration of the Mendelian heritability of chromosomal radiosensitivity in 95 family members of breast cancer cases. Challenges for the future include more heritability studies, identification of the underlying genetic determinants, assessment of the associated cancer risk (spontaneous and radiogenic) and population screening for cancer prevention strategies.  相似文献   

8.
Porokeratosis is a rare genetic skin disorder known to be associated with a propensity to develop skin cancer. To further elucidate the previously reported cytogenetic and cellular abnormalities, we studied karyotypic changes and the sensitivity to X-ray irradiation of cultured fibroblasts derived from skin lesions and normal-appearing skin of 3 patients with porokeratosis. Cultured fibroblasts from normal-appearing skin of 9 controls were similarly examined. Porokeratosis subjects had a greater number of cells with chromosomal abnormalities than controls. Two porokeratosis strains which were derived from the normal-appearing skin of a patient had a noticeable clone of abnormal cells. Porokeratosis fibroblasts were hypersensitive to the lethal effects of X-radiation. This hypersensitivity was common to both the lesion-derived strains and the ones derived from normal-appearing skin. The 2 strains with clonal abnormal cells were also similarly hypersensitive to X-radiation. These results suggest that chromosomal instability is strongly related to porokeratosis and that X-ray hypersensitivity is an inherent abnormality in cultured fibroblasts of porokeratosis patients.  相似文献   

9.
We have tested G0 phase human peripheral lymphocytes for liquid holding recovery (LHR) mediated decreases in X-ray-induced chromosomal aberration yields and increases in sister-chromatid exchange (SCE) levels such as have been demonstrated for confluency-inhibited mouse cells in culture (Nagasawa and Little, 1981). No influence on either aberration yields or SCE levels was demonstrated. However, an effect at least superficially similar to the LHR effect was seen for rings and dicentrics, but not for deletions or SCE in lymphocytes in transition between G0 and G1 following PHA stimulation.  相似文献   

10.
Cells respond to genotoxic insults such as ionizing radiation by halting in the G2 phase of the cell cycle. Delayed cell death (mitotic death) can occur when the cell is released from G2, and specific spindle defects form endopolyploid cells (endoreduplication/tetraploidy). Enhanced G2 chromosomal radiosensitivity has been observed in many cancers and genomic instability syndromes, and it is manifested by radiation-induced chromatid aberrations observed in lymphocytes of patients. Here we compare the G2 chromosomal radiosensitivity in prostate patients with benign prostatic hyperplasia (BPH) or prostate cancer with disease-free controls. We also investigated whether there is a correlation between G2 chromosomal radiosensitivity and aneuploidy (tetraploidy and endoreduplication), which are indicative of mitotic cell death. The G2 assay was carried out on all human blood samples. Metaphase analysis was conducted on the harvested chromosomes by counting the number of aberrations and the mitotic errors (endoreduplication/tetraploidy) separately per 100 metaphases. A total of 1/14 of the controls were radiosensitive in G2 compared to 6/15 of the BPH patients and 15/17 of the prostate cancer patients. Radiation-induced mitotic inhibition was assessed to determine the efficacy of G2 checkpoint control in the prostate patients. There was no significant correlation of G2 radiosensitivity scores and mitotic inhibition in BPH patients (P = 0.057), in contrast to prostate cancer patients, who showed a small but significant positive correlation (P = 0.029). Furthermore, there was no significant correlation between G2 radiosensitivity scores of BPH patients and endoreduplication/ tetraploidy (P = 0.136), which contrasted with an extremely significant correlation observed in prostate cancer patients (P < 0.0001). In conclusion, cells from prostate cancer patients show increased sensitivity to the induction of G2 aberrations from ionizing radiation exposure but paradoxically show reduced mitotic indices and aneuploidy as a function of aberration frequency.  相似文献   

11.
Trisomy 21 (Down's syndrome, DS) is the most frequent chromosomal aberration. Triplication of a small region of chromosome 21, the fragment 21q22 is sufficient to cause the DS phenotype including immunodeficiency, premature aging, neurodegenerations, mental retardation and an increased risk of leukemia. Chromosomal aberrations caused by X-ray irradiation were observed in DS lymphocytes and DS fibroblasts, but the correlation to cell death or repair deficiency was not clear. We approached this problem and report here on a profound X-ray repair deficiency of DS cells. With a colorimetric viability assay we observed an UV sensitivity of DS fibroblasts at doses beyond 14 Jm-2 but no significant X-ray sensitivity. By the nucleoid sedimentation technique, a deficient restoration of nucleoids in DS cells after X-ray irradiation was demonstrated. The same features apply for cells, which contain an overexpressed Cu/Zn-superoxide dismutase (SOD-1) gene. Radiation sensitivity of DS cells and SOD-1 overexpressing cells resemble those of ataxia telangiectasia (AT) fibroblasts. Additionally, DS and AT cells exert lack of inhibition of DNA synthesis after X-ray irradiation.  相似文献   

12.
Barenfel'd LS 《Tsitologiia》2002,44(4):379-386
Down syndrome (DS) is a frequent chromosomal aberration. Triplication of the fragment 21q22 of chromosome 21 is sufficient to cause the DS phenotype including immunodeficiency, premature aging, mental retardation, and an increased risk of leukemia. Chromosomal aberrations caused by X-ray irradiation were observed in DS lymphocytes and DS fibroblasts, but the correlation between chromosomal sensitivity, repair deficiency, and radioresistant DNA synthesis was not clear. Here some insight into the nature of this problem has been made. Besides, new arguments have been provided in favour of genetic heterogeneity of this genetic disorder.  相似文献   

13.
M Holmberg 《Mutation research》1990,232(2):267-272
Quiescent human lymphocytes were X-irradiated and allowed to repair for various times at 37 degrees C before the cells were challenged with the DNA-repair inhibitor ara-C. The observed yield of chromosome exchange aberrations (dicentrics) was about twice the yield induced by X-rays alone, if ara-C was added immediately after irradiation. The yield as a function of the repair time between X-irradiation and ara-C treatment decreased with a half-life of 15-30 min and was almost down to the baseline yield for X-rays alone after 1 h. This shows that an exchange aberration can be formed from a short-lived DNA break. In contrast, previously published results from dose-split experiments demonstrate that the half-life of the interacting DNA breaks is of the order of several hours. A model is proposed which can account for the different estimates of the time course of the interactions involved in the process which leads to an exchange aberration.  相似文献   

14.
The aim of this study is to investigate the role of the cell-cycle phase in cells exposed to radiation and chemicals in relation to the cellular response. The analysis was focused on the G2 cell-cycle phase, exploring the impact of p53 inhibition in human lymphocytes irradiated with X-rays in the presence or absence of pifithrin-α (PFT-α), a p53-specific inhibitor. Lymphocytes, 44h after stimulation to proliferate, were X-irradiated with 0.5Gy both in the presence or the absence of PFT-α and post-treated with a pulse of 5-bromodeoxyuridine (BrdUrd) to distinguish cells in the S- or G2-phase at the moment of irradiation. At early sampling times after X-ray exposure the following parameters were analysed: cellular proliferation, apoptosis, chromosomal aberrations and p53 expression. The results show an enhancement of apoptotic cells in G2 at early sampling times after irradiation and no differences in terms of chromosomal aberration induction both in cells treated with X-rays alone and in cells treated with X-rays plus PFT-α. Expression of p53 was not detectable at all recovery times. The results suggest a p53-independent apoptotic pathway acting at early times after X-ray exposure in G2 lymphocytes. Furthermore, the same yield of X-ray-induced chromatid breaks was observed both in the presence or absence of PFT-α implying that in G2 X-irradiated lymphocytes this inhibitor of the p53 protein does not affect DNA repair.  相似文献   

15.
From more than 500 tumours reported in human primary immune deficiencies a majority has been observed in two disorders: ataxia telangiectasia (A-T) and common variable immune deficiency (CVID). Since both diseases have an increased risk of lymphomas/leukaemias and gastrointestinal tumours, suggesting a common risk factor, and the cells derived from A-T patients exhibit an increased chromosomal radiosensitivity we analysed chromosome damage in the G2 lymphocytes of 24 CVID pateints and 21 controls after X-irradiation in vitro.

There was a significant difference in mean aberration yields between patients and controls. Three CVID patients had yields higher than the mean + 3SD of the controls. Six patients but only one control had yields higher than the mean + 2SD of controls. The patient with the highest chromosomal radiosensitivity subsequently developed a lymphoma. Repeat assays on the same blood sample, with a 24-h delay in setting up the second culture, showed as much variability for control donors as the variation between control donors although for CVID patients inter-individual variation was greater than the difference between results of repeat samples. There was a weak positive correlation between radiosensitivity and age of donor. Chromosomal radiosensitivity of five patients with X-linked hypogammaglobulinaemia was not different from healthy donors.

The mean mitotic index (MI) for unirradiated samples from CVID patients was significantly lower than for controls and there was an inverse relationship between MI and aberration yields in the patients, but not in controls. We suggest that the defect in CVID patients that reduces response to mitogenic stimuli may have mechanism(s) in common with those involved in cellular repair processes.  相似文献   


16.
Here, induction of chromosomal aberration after X-irradiation and the pattern of cell cycle kinetics have been investigated in human lymphocytes, after exogenous addition of reduced glutathione or by depleting levels of reduced glutathione endogenously. Involvement of cell cycle regulator proteins such as p53 and p21 has been investigated to elucidate their role in induction of delay in cell cycle progression after irradiation.  相似文献   

17.
Peripheral blood lymphocytes from normal human volunteers or from Down syndrome patients were pre-treated with sodium butyrate (a compound which is known to induce structural modifications in the chromatin through hyperacetylation of nucleosomal core histones) and exposed to X-irradiation or treated with bleomycin in vitro in the G0 and/or G1 stage(s) of the cell cycle. The frequencies of chromosomal aberrations in the first mitosis after treatment were scored. The results show an enhancement in the yield of aberrations in the butyrate pre-treated groups. However, the absolute frequencies of chromosomal aberrations as well as the relative increases with butyrate pre-treatment varied between blood samples from different donors suggesting the existence of inter-individual variations. There is a parallelism between the effects of X-irradiation or of combined treatments in G0 and G1 stages and between effects observed in the X-ray and bleomycin series. The increase in the yields of chromosomal aberrations in butyrate-treated and X-irradiated lymphocytes (relative to those which received X-irradiation alone) is interpreted as a consequence of the inhibition of repair of DNA damage by butyrate.  相似文献   

18.
The cytogenetic effect of bleomycin (BLM) in human lymphocytes was studied after exposure to different doses during the G0 and G2 phases. BLM produced a marked specific effect on the cell cycle. The main aberration types after exposure in tg0 were dicentrics and deletions; and after exposure in G2, open chromatid breaks. A linear dose--response was calculated for all these aberration types as well as for the number of aberrant cells. In the G2 experiments, partially and totally pulverized cells also increased linearly with dose. The intercellular distributions of the most frequent aberration types after exposure in G0 and G2--the dicentrics and chromatid breaks, respectively--showed over-dispersion. These results show that the cytogenetic effect of BLM may be compared with that of densely ionizing irradiation. Preliminary results of chromosome analysis of three cancer patients in the course of BLM therapy showed effects similar to those in the G0 experiments.  相似文献   

19.
With X-ray examinations of the stomach and duodenum, changes in chromosomal aberration frequencies in peripheral blood lymphocytes were shown to depend on the spontaneous level of these aberrations in patients exposed to a single local irradiation by 25 R. The cytogenetic efficiency of radiation exposure was found to be local in patients with the lower frequency of spontaneous chromosomal aberrations. A genetic genesis of the revealed dependence is supposed. The effect of irradiation on the correlation between radiosensitivity and radioresistance of the cytogenetic process is regarded as a possible mechanism of the appearance of the observed dependence.  相似文献   

20.
L Fabry  C Coton 《Mutation research》1985,149(3):475-483
Cytosine arabinoside (ara-C), an inhibitor of DNA synthesis and repair, has been used to study the mechanisms of formation of chromosomal aberrations after exposure to low- and high-LET radiation. When G0 human lymphocytes were exposed either to gamma-rays or to d(50 MeV)-Be neutrons and immediately treated with ara-C for increasing periods of time, the frequency of aberrations (dicentrics) increased sharply. For gamma-rays, the enhancement increased with the duration of the treatment up to 5 h, whereas for neutrons, an ara-C treatment lasting for 5 h was no more effective than treatment for 3 h. These results were confirmed by the second experiment in which ara-C was administered for 3 h with an increasing time delay following irradiation. Since no increase in the dicentric frequency was observed when ara-C was administered 5 h after gamma-irradiation, it is suggested that the induced breaks rejoined within that time. For neutrons, the data were conflicting since the repair was completed within 3 h after a dose of 0.5 Gy, and in approximately 5 h after a dose of 2.0 Gy. From both experiments, it appears that gamma-rays and fast neutrons produce similar types of lesions, as ara-C increased the frequencies of aberrations induced by both types of radiation. However, the ara-C treatment resulted in a smaller increase in aberrations following neutron irradiation. According to the enzymatic nature of break formation and the mode of action of ara-C on the polymerase activity, it is suggested that, in addition to double-strand breaks, single-strand breaks could be the lesions involved in the repair processes inhibited by ara-C. Single-strand breaks formed directly or by secondary reactions would, therefore, be one of the major lesions responsible for the aberrations produced by gamma and neutron radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号