首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and β-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

2.
The influence of three organic compounds and bakers' dry yeast on growth of external mycelium and phosphorus uptake of the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith (BEG 87) was examined. Two experiments were carried out in compartmentalized growth systems with root-free sand or soil compartments. The sand and soil in the root-free compartments were left untreated or uniformly mixed with one of the following substrates (0.5 mg g−1 soil): bakers' dry yeast, bovine serum albumin, starch or cellulose. Effects of the organic substrates on biomass and hyphal length density of the arbuscular mycorrhizal fungus were examined by using specific fatty acid signatures in combination with direct microscopy. Micro-organisms other than the arbuscular mycorrhizal fungus were measured by fatty acid signatures, and radioactive 33P labelling of the root-free soil was used to determine arbuscular mycorrhizal hyphal phosphorus uptake. In general, hyphal growth of G. intraradices was enhanced by yeast and bovine serum albumin, whereas the carbon sources, starch and cellulose, depressed fungal growth. By analysing the fatty acid 16:1ω5 from phospholipids (indicating mycelium) and neutral lipids (indicating storage structures) it was shown that increased fungal growth due to yeast was mainly in vegetative hyphae and less in storage structures. Arbuscular mycorrhizal hyphal phosphorus uptake was decreased by cellulose, but unaffected by the other substrates compared with the control. This means that both growth and phosphorus transport by the arbuscular mycorrhizal fungus were decreased under cellulose treatment. However, the composition of the microbial community varied under different substrate conditions indicating a possible interactive component with arbuscular mycorrhizal hyphal growth and phosphorus uptake.  相似文献   

3.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1omega5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1omega5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1omega5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

4.
The rate of global deposition of Cd, Pb, and Zn has decreased over the past few decades, but heavy metals already in the soil may be mobilized by local and global changes in soil conditions and exert toxic effects on soil microorganisms. We examined in vitro effects of Cd, Pb, and Zn on critical life stages in metal-sensitive ecotypes of arbuscular mycorrhizal (AM) fungi, including spore germination, presymbiotic hyphal extension, presymbiotic sporulation, symbiotic extraradical mycelium expansion, and symbiotic sporulation. Despite long-term culturing under the same low-metal conditions, two species, Glomus etunicatum and Glomus intraradices, had different levels of sensitivity to metal stress. G. etunicatum was more sensitive to all three metals than was G. intraradices. A unique response of increased presymbiotic hyphal extension occurred in G. intraradices exposed to Cd and Pb. Presymbiotic hyphae of G. intraradices formed presymbiotic spores, whose initiation was more affected by heavy metals than was presymbiotic hyphal extension. In G. intraradices grown in compartmentalized habitats with only a portion of the extraradical mycelium exposed to metal stress, inhibitory effects of elevated metal concentrations on symbiotic mycelial expansion and symbiotic sporulation were limited to the metal-enriched compartment. Symbiotic sporulation was more sensitive to metal exposure than symbiotic mycelium expansion. Patterns exhibited by G. intraradices spore germination, presymbiotic hyphal extension, symbiotic extraradical mycelium expansion, and sporulation under elevated metal concentrations suggest that AM fungi may be able to survive in heavy metal-contaminated environments by using a metal avoidance strategy.  相似文献   

5.
Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis.  相似文献   

6.
The saprophytic fungi Wardomyces inflatus (Marchal) Hennebert, Paecilomyces farinosus (Holm & Gray) A. H. S. Brown & G. Sm., Gliocladium roseum Bain., sterile dark mycelium (SDM-54), Trichoderma pseudokoningii Rifai and Trichoderma harzianum Rifai were isolated from sporocarps of Glomus mosseae. The effect of saprophytic fungi on G. mosseae spore germination was tested on water agar. Wardomyces inflatus decreased the percent germination of G. mosseae spores; G. roseum, T. pseudokoningii and T. harzianum had no effect on germination; and P. farinosus and SDM-54 increased the percentage of spore germination of G. mosseae after 4 d. Wardomyces inflatus significantly decreased hyphal length of spores which germinated, but no other saprophytic fungi affected hyphal growth. Trichoderma pseudokoningii, T. harzianum, P. farinosus and SDM-54 increased the number of auxiliary cells formed by G. mosseae. The effect of saprophytic fungi on arbuscular mycorrhizal colonization of soybean was studied in a greenhouse trial. The percentage of soybean root length colonized was decreased by W. inflatus, unaffected by SDM-54 and T. harzianum, and increased by P. farinosus. Gliocladium roseum decreased root length colonized when plants were 12 wk old, and T. pseudokoningii increased colonization of roots when plants were 4 wk old. Antagonistic, synergistic and neutral actions of G. mosseae upon the saprophytic fungi were observed. The population of T. harzianum decreased and the populations of T. pseudokoningii and SDM-54 increased in the presence of G. mosseae. Our results indicate a complex interaction between G. mosseae and associated saprophytic fungi.  相似文献   

7.
The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to natural temperature and moisture variation. Hyphal respiration did not respond significantly to elevated CO2 and O3. Sporocarp respiration was affected by temperature and moisture content while hyphal respiratory response to temperature was undetected over the narrower range of soil temperatures captured. Hyphal respiration comprised 31 % of soil respiration, and the ratio of hyphal respiration to soil respiration declined with elevated CO2. Hyphal biomass was reduced under all treatments though not statistically significant. Given the large fraction of soil respiration represented by mycorrhizal fungi and its sensitivity to climate, a small change in fungal respiration could strongly affect carbon budgets and cycling under climate change.  相似文献   

8.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1ω5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1ω5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1ω5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

9.
Olsson  P.A.  Francis  R.  Read  D.J.  Söderström  B. 《Plant and Soil》1998,201(1):9-16
Fatty acid analysis was used for determining the extent of the development of the external mycelium of AM fungi (mixed inoculum from a sand dune) growing from roots of Festuca rubra and Plantago lanceolata in calcareous dune sand. The plants were raised in chambers specially designed to permit the growth of AM mycelium in root-free compartments. In two separate experiments, growth of external mycelium in the root-free compartments was detected and the amount of mycelium was estimated using the indicator of AM fungal biomass, phospholipid fatty acid (PLFA) 16:15. The results showed that the PLFA 16:15 was suitable for estimating the mycelium emerging from the mixed inoculum obtained from the field roots of F. rubra and P. lanceolata.The PLFA 16:15 showed external mycelium to become established in the root-free compartments within a period of 3 weeks and the amount of mycelium to continue to increase at 6 and 9 weeks. Increases in neutral lipid fatty acid (NLFA) 16:15 (indicator of storage lipids) over time were inconsistent between the two experiments, but appeared to follow patterns of sporulation in each experiment.In both experiments, the root-free compartment was colonised by saprophytic fungi to a greater extent in the case of non-mycorrhizal than of AM treatment, as indicated by an increase in PLFA 18:26,9 (indicator of saprophytic fungi). The absence of an increase in the case of AM treatment indicates that AM fungal mycelium can negatively affect the growth of saprophytic fungi in this soil type. This result was, however, only weakly supported by measurements of ergosterol content. The analysis of bacteria specific PLFAs showed that bacterial biomass was not affected by the AM mycelium.  相似文献   

10.
 The effect of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal (AM) fungi in symbiosis with cucumber plants was studied in compartmentalised growth systems. Hyphae of Glomus intraradices Schenck & Smith (BEG87) or G. caledonium (Nicol. & Gerd.) Trappe & Gerdeman (BEG15) grew into lateral root-free compartments. Non-mycorrhizal plants served as control. The soil in half of the growth units of each mycorrhizal treatment was inoculated with P. fluorescens DF57. P. fluorescens DF57 enhanced hyphal length density of one of the AM fungi, G. caledonium, but this was not reflected in a higher hyphal transport of P from the root-free soil to the plant. The total P content was higher in plants grown in symbiosis with G. intraradices than in plants in the other treatments. G. caledonium and P. fluorescens DF57 had a synergistic effect in that total P content in plants inoculated with G. caledonium was higher in the presence than in the absence of P. fluorescens DF57. Accepted: 7 January 1999  相似文献   

11.
12.
It is currently accepted that, along with nutrients, arbuscular mycorrhizal (AM) fungi also transport water to their host plant. However, the quantity of water supplied and its significance for plant water relations remain controversial. The objective of this work was to evaluate and compare the ability of six AM fungi to alter rates of root water uptake under drought stress conditions. Soil drying rates of uninoculated control plants of comparable size and nutritional status and mycorrhizal plants were recorded daily. Lactuca sativa plants colonized by Glomus coronatum , G. intraradices , G. claroideum and G. mosseae depleted soil water to a higher extent than comparably sized uninoculated control plants or plants colonized by G. constrictum or G. geosporum . The differences ranged from 0.6% volumetric soil moisture for G. mosseae -colonized plants to 0.95% volumetric soil moisture for G. intraradices -colonized plants. These differences in soil moisture were equivalent to 3–4.75 ml plant−1 day−1, respectively, and could not be ascribed to differences in plant size, but to the activity of AM fungi. The AM fungi tested in this study differed in their effectiveness to enhance plant water uptake from soil. This ability seems to be related to the amount of external mycelium produced by each AM fungus and to the frequency of root colonization in terms of live and active fungal structures.  相似文献   

13.
土壤中镉对丛枝菌根真菌Glomus mosseae生长的效应   总被引:2,自引:0,他引:2  
张淑彬  冯固  李晓林 《菌物学报》2005,24(4):576-581
采用分室培养法,在同一宿主植物生长的土壤中设含有0、5、25、50mg/kg4个不同浓度重金属镉的菌丝生长室(用30μm尼龙网与根系隔开)以期建立在宿主植物生长状况完全相同的条件下研究环境因素对AM真菌直接影响的新方法,并在此基础上探讨不同浓度的重金属镉对丛枝菌根真菌Glomus mosseae(BEG167)生长的直接影响。结果表明,与不施加镉的处理相比,土壤中施加低浓度镉(5mg/kg)刺激了G.mosseae的生长,其菌丝总长度最大;高浓度镉(大于25mg/kg)抑制了G.mosseae的生长,其菌丝总长度较小。AM真菌的代谢活性与土壤镉浓度的关系也表现出与菌丝生物量相同的规律。以上结果表明:G.mosseae在镉污染环境中有应激反应的特征,即:当G.mosseae受到轻微毒害时,为了适应其生存条件的改变而不断增加其代谢活性和生长量来降低镉的毒害。此外,本方法用于研究宿主植物生长状况相同的条件下,重金属毒害或其他环境因素对AM真菌生长代谢的直接影响是可行的。  相似文献   

14.
Tritrophic interactions in a soil community enhance decomposition rates   总被引:3,自引:0,他引:3  
Microbivorous soil fauna can influence decomposition rates by regulating biomass and composition of the microbial community. The idea that predators at higher trophic levels regulate population densities of microbivorous fauna and thus indirectly increase microbial growth and activity has often been suggested but rarely examined in soil ecosystems. In this paper the effects of tritrophic interactions on decomposition processes in the soil are studied and expressed as soil respiration, hyphal lengths, cellulase and chitinase activities. The experiments were carried out in soil microcosms in a factorial design with three fungal species ( Alternaria alternata , Fusarium oxysporum , Trichoderma viride ), the fungivorous collembolan Folsomia fimetaria and the predatory mite Hypoaspis aculeifer . The respiration rate was significantly higher with three trophic levels than in those with two and lowest in those with only fungi present. This indicates that a low level of grazing stimulates microbial respiration more than a high level or no grazing at all. The effect was similar for all three fungal species but most pronounced in microcosms with the fungus A. alternata which was a preferred food source by the collembolans. Hyphal lengths were in all cases but with T. viride reduced in the presence of collembolans and predatory mites. T. viride had a slightly higher chitinase activity than the other fungi but increased numbers of trophic levels did not affect the enzymatic activities of any of the fungi.  相似文献   

15.
Mycorrhizal symbiosis can modify plant response to drying soil, but little is known about the relative contribution of soil vs. root hyphal colonization to drought resistance of mycorrhizal plants. Foliar dehydration tolerance, characterized as leaf and soil water potential at the end of a lethal drying episode, was measured in bean plants (Phaseolus vulgaris) colonized by Glomus intraradices or by a mix of arbuscular mycorrhizal fungi collected from a semi-arid grassland. Path analysis modeling was used to evaluate how colonization rates and other variables affected these lethal values. Of several plant and soil characteristics tested, variation in dehydration tolerance was best explained by soil hyphal density. Soil hyphal colonization had larger direct and total effects on both lethal leaf water potential and soil water potential than did root hyphal colonization, root density, soil aggregation, soil glomalin concentration, leaf phosphorus concentration or leaf osmotic potential. Plants colonized by the semi-arid mix of mycorrhizal fungi had lower lethal leaf water potential and soil water potential than plants colonized by G. intraradices. Our findings support the assertion that external, soil hyphae may play an important role in mycorrhizal influence on the water relations of host plants.  相似文献   

16.
The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 m). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.  相似文献   

17.
The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.  相似文献   

18.
 A plant growth system with root-free hyphal compartments was used to examine the interactions between a mycophagous Collembola (Folsomia candida Willem), dry yeast and an arbuscular mycorrhizal (AM) fungus [Glomus caledonium (Nicol. & Gerd.) Trappe and Gerdemann] in terms of Collembola reproduction, AM-hyphal length and AM-hyphal P transport. Collembola reproduction was unaffected by AM mycelium, but a supplement of dry yeast increased the Collembola population size. The addition of dry yeast increased AM-hyphal P transport by increasing hyphal length. Collembola without yeast affected neither AM-hyphal growth nor AM-hyphal P transport, whereas Collembola with yeast decreased AM-hyphal P transport by 75% after 8 weeks. The hyphal density of G. caledonium remained unaffected by Collembola except after 4 weeks in combination with yeast, when a 33% reduction was observed. The results of this experiment show that the interaction between F. candida and the external mycelium of G. caledonium is limited under the conditions imposed. Accepted: 27 February 1996  相似文献   

19.
During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).  相似文献   

20.
Studies of the saprotrophic growth dynamics of Trichoderma species and their fungal hosts during antagonistic interactions are severely hampered by the absence of methods that allow the unambiguous identification and quantification of individual genera in complex environments such as soil or compost containing mixed populations of fungi. Furthermore, methods are required that allow discrimination between active hyphal growth and other components of fungal biomass such as quiescent spores that are produced in large numbers by Trichoderma species. This study details the use of monoclonal antibodies to quantify the saprotrophic growth dynamics of the soil-borne plant pathogen Rhizoctonia solani and biological control strains of Trichoderma asperellum and Trichoderma harzianum during antagonistic interactions in peat-based microcosms. Quantification was based on the immunological detection of constitutive, extracellular antigens that are secreted from the growing tip of Rhizoctonia and Trichoderma mycelium and, in the case of Trichoderma harzianum, from quiescent phialoconidia also. The Trichoderma-specific monoclonal antibody (MF2) binds to a protein epitope of the enzyme glucoamylase, which was shown by immunofluorescence and immunogold electron gold microscopy studies of Trichoderma virens in vitro to be produced at the origin of germ tube emergence in phialoconidia and from the growing tip of germ tubes. In addition, a non-destructive immunoblotting technique showed that the enzyme was secreted during active growth of Trichoderma asperellum mycelium in peat. The Rhizoctonia solani-specific monoclonal antibody (EH2) similarly binds to a protein epitope of a glycoprotein that is secreted during active mycelial growth. Extracts derived from lyophilized mycelium were used as a quantifiable and repeatable source of antigens for construction of calibration curves. These curves were used to convert the absorbance values obtained in ELISA tests of peat extracts to biomass equivalents, which allowed comparisons of the saprotrophic growth dynamics of the pathogen and antagonists to be made in single or mixed species microcosms. Trichoderma species were able to compete successfully with R. solani for nutrients and to prevent saprotrophic growth of the pathogen. Specificity of the Trichoderma quantitative assay was tested in non-sterile soil-based microcosms artificially inoculated with T. asperellum. The assay was highly specific and only detected T. asperellum population dynamics. No cross-reactivity was found with extracts from soil samples containing contaminant fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号