首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Lipid peroxidation in biological membranes is accompanied by malonic dialdehyde (MDA) formation, but the problem of its further metabolism in cytoplasm remains unsolved. The experimental data obtained in this work showed that the liver fraction prepared by centrifugation at 10,000g contained phosphoglucose isomerase and enzymes of the glyoxalase system. In this fraction in the presence of GSH there is an aggregate of reactions taking place both in membranes (lipid peroxidation) and outside membranes (MDA conversion to methylglyoxal and further to neutral D-lactate). This means that MDA is slowly accumulated because it is a substrate of aldehyde isomerase (MDA <--> methylglyoxal). Most probably, phosphoglucose isomerase serves as this enzyme. We concluded that D-lactate should be regarded as the end product of two different parametabolic reactions: lipid peroxidation or protein glycation.  相似文献   

2.
Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2,4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 μM) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM–162 μM) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.  相似文献   

3.
A DNA fragment containing both the Escherichia coli -xylose isomerase ( -xylose ketol-isomerase, EC 5.3.1.5) gene and the -xylulokinase (ATP: -xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The -xylose isomerase gene was separated from the -xylulokinase gene by the construction of a new deletion plasmid, pLX7. The -xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the -xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first -xylose isomerase gene that has been isolated and extensively purified from any organism. -Xylose isomerase, the enzyme product of the -xylose isomerase gene, is responsible for the conversion of -xylose to -xylulose, as well as -glucose to -fructose. It is widely believed that yeast cannot ferment -xylose to ethanol primarily because of the lack of -xylose isomerase in yeast. -Xylose isomerase (also known as -glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the -xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting -xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology.  相似文献   

4.
ORF PAE1610 from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum was first annotated as the conjectural pgi gene coding for hypothetical phosphoglucose isomerase (PGI). However, we have recently identified this ORF as the putative pgi/pmi gene coding for hypothetical bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). To prove its coding function, ORF PAE1610 was overexpressed in Escherichia coli, and the recombinant enzyme was characterized. The 65-kDa homodimeric protein catalyzed the isomerization of both glucose-6-phosphate and mannose-6-phosphate to fructose-6-phosphate at similar catalytic rates, thus characterizing the enzyme as bifunctional PGI/PMI. The enzyme was extremely thermoactive; it had a temperature optimum for catalytic activity of about 100°C and a melting temperature for thermal unfolding above 100°C.  相似文献   

5.
The activity of phosphoglucose isomerase, its kinetic properties, and the effect of 6-phosphogluconate on its activity in the forward (glucose 6-phosphate----fructose 6-phosphate) and the reverse (fructose 6-phosphate----glucose 6-phosphate) reactions were determined in adult rat brain in vitro. The activity of phosphoglucose isomerase (in nmol/min/mg of whole brain protein) was 1,865 +/- 20 in the forward reaction and 1,756 +/- 32 in the reverse reaction at pH 7.5. It was 1,992 +/- 28 and 2,620 +/- 46, respectively, at pH 8.5. The apparent Km and Vmax of phosphoglucose isomerase were 0.593 +/- 0.031 mM and 2,291 +/- 61 nmol/min/mg of protein, respectively, for glucose 6-phosphate and 0.095 +/- 0.013 mM and 2,035 +/- 98 nmol/min/mg of protein, respectively, for fructose 6-phosphate. The activity of phosphoglucose isomerase was inhibited intensely and competitively by 6-phosphogluconate, with an apparent Ki of 0.048 +/- 0.005 mM for glucose 6-phosphate and 0.042 +/- 0.004 mM for fructose 6-phosphate as the substrate. With glucose 6-phosphate as the substrate, at concentrations from 0.05 to 0.5 mM, the activity of the enzyme was inhibited completely in the presence of 0.5-2.0 mM 6-phosphogluconate. With 0.05-0.2 mM fructose 6-phosphate as the substrate, it was inhibited greater than or equal to 85% at the same concentrations of the inhibitor. No significant changes were observed in the values of Km, Vmax, and Ki for phosphoglucose isomerase in the brain of 6-aminonicotinamide-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Electrophoretic variants of phosphoglucose isomerase (EC.5.3.1.9) and phosphoglucose mutase (EC.2.7.5.1) have been studied in eight species of freshwater molluscs. Two phenotypes of phosphoglucose isomerase were observed in Melanopsis nodosa and one phenotype was observed in the rest of the species. One phenotype of phosphoglucose mutase was observed in all the species of molluscs studied. Phosphoglucose isomerase is inferred to be a dimer encoded at a single polymorphic locus in Melanoides nodosa. There are two alleles at this locus. Phosphoglucose mutase is inferred to be a monomer encoded at a single monomorphic locus in all species. The electrophoretic analysis revealed that phosphoglucose isomerase enzyme cannot be considered a good taxonomic criterion to differentiate the different members of the six families studied but, on the other hand, it is considered a good taxonomic criterion to differentiate Melanopsis nodosa and Theodoxus jordani. Phosphoglucose mutase is considered a good taxonomic criterion to differentiate the family Melanidae from the remaining five families studied. General protein can be considered a good taxonomic criterion to differentiate the family Corbicullidae from Melanidae, Viviparidae and Neritidae but, on the other hand, it seems to be a less useful taxonomic criterion to differentiate between the Viviparidae and Neritidae.  相似文献   

7.
An aldehyde reduction enzyme has been purified from the cytosol of the tapeworm, Moniezia expansa, by chromatofocusing and Reactive-Red chromatography. The enzyme is monomeric (subunit 34 kDa) and can utilise NADH and NADPH as co-factors. Substrates of the enzyme include alkanals, alka-2,4-dienals and alk-2-enals, established secondary products of lipid peroxidation. The enzyme reduced methylglyoxal, another possible natural substrate (M. expansa lacks glyoxalase I activity). The parasite enzyme may help form a final line of defence against cytotoxic aldehydes arising from host immune initiated lipid peroxidation.  相似文献   

8.
Summary The PGI1 gene of Saccharomyces cerevisiae coding for the glycolytic enzyme phosphoglucose isomerase has been cloned by complementation of a mutant strain (pgi1) with a strongly reduced phosphoglucose isomerase activity. A genomic library constructed in the yeast multicopy vector YEp13 (Nasmyth and Tatchell 1980) was used. Four plasmids containing an overlapping region of 4.1 kb were isolated and characterized by restriction endonuclease mapping. Southern analysis of genomic digests prepared with different restriction enzymes confirmed the same pattern for the chromosomal sequences. Transformants with the isolated plasmids had a phosphoglucose isomerase activity increased by a factor of 7. The cloned sequence hybridized to a constitutively synthesized 2.2 kb RNA in Northern analysis. The coding region includes a 2.05 kb EcoRI fragment common to all four inserts. A fragment including part of the PGI1 region was subcloned into vector YRp7 and used to induce integration at the PGI1 locus. Genetical and Southern analysis of stable transformants showed that single as well as tandem integration took place at this locus. This showed that the PGI1 gene had been isolated. Finally, and in contrast to the results of Kempe et al. (1974a, b) who reported three isoenzymes in yeasts, only one copy of the PGI1 gene per genome was found in several laboratory strains tested by Southern analysis.  相似文献   

9.
Increasing appreciation of the causative role of oxidative injury in many disease states places great importance on the reliable assessment of lipid peroxidation. Malondialdehyde (MDA) is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products. At low pH and elavated temperature, MDA readily participates in nucleophilic addition reaction with 2-thiobarbituric acid (TBA), generating a red, fluorescent 1:2 MDA:TBA adduct. These facts, along with the availability of facile and sensitive methods to quantify MDA (as the free aldehyde or its TBA derivative), have led to the routine use of MDA determination and, particularly, the “TBA test” to detect and quantify lipid peroxidation in a wide array of sample types. However, MDA itself participates in reactions with molecules other than TBA and is a catabolic substrate. Only certain lipid peroxidation products generate MDA (invariably with low yields), and MDA is neither the sole end product of fatty peroxide formation and decomposition nor a substance generated exclusively through lipid peroxidation. Many factors (e.g., stimulus for and conditions of peroxidation) modulate MDA formation from lipid. Additional factors (e.g., TBA-test reagents and constituents) have profound effects on test response to fatty peroxide-derived MDA. The TBA test is intrinsically nonspecific for MDA: nonlipid-related materials as well as fatty peroxide-derived decomposition products other than MDA are TBA positive. These and other considerations from the extensive literature on MDA, TBA reactivity, and oxidative lipid degradation support the conclusion that MDA determination and the TBA test can offer, at best, a narrow and somewhat empirical window on the complex process of lipid peroxidation. The MDA content and/or TBA reactivity of a system provides no information on the precise structures of the “MDA precursor(s),” their molecular origins, or the amount of each formed. Consequently, neither MDA determination nor TBA-test response can generally be regarded as a diagnostic index of the occurrence/extent of lipid peroxidation, fatty hydroperoxide formation, or oxidative injury to tissue lipid without independent chemical evidence of the analyte being measured and its source. In some cases, MDA/TBA reactivity is an indicator of lipid peroxidation; in other situations, no qualitative or quantitative relationship exists among sample MDA content, TBA reactivity, and fatty peroxide tone. Utilization of MDA analysis and/or the TBA test and interpretation of sample MDA content and TBA test response in studies of lipid peroxidation require caution, discretion, and (especially in biological systems) correlative data from other indices of fatty peroxide formation and decomposition.  相似文献   

10.
1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The implications of these results for regulation and for evolution are discussed.  相似文献   

11.
Membrane lipid peroxidation results in the production of a variety of aldehydic compounds that play a significant role in aging, drug toxicity and the pathogenesis of a number of human diseases, such as atherosclerosis and cancer. Increased lipid peroxidation and reduced antioxidant status may also contribute to the development of diabetic complications. This study reports that lipid peroxidation end products such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) induce aldehyde reductase (ALR) gene expression. MDA and HNE induce an increase in intracellular peroxide levels; N-Acetyl-L-cysteine (NAC) suppressed MDA- and HNE-induced ALR gene expression. These results indicate that increased levels of intracellular peroxides by MDA and HNE might be involved in the upregulation of ALR.  相似文献   

12.
Lipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds requires reducing power. One of the main sources of cellular NADPH is the oxidative pentose phosphate pathway (OPPP), generated from the oxidation of glucose-6-phosphate. This glycolytic intermediate, which can be imported to the plastid and enter in the OPPP, is the substrate and product of cytosolic phosphoglucose isomerase (cPGI, EC 5.3.1.9). In this report, we describe the cloning of a full-length cDNA encoding cPGI from developing sunflower seeds. The sequence was predicted to code for a protein of 566 residues characterised by the presence of two sugar isomerase domains. This cDNA was heterologously expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified using immobilised metal ion affinity chromatography and biochemically characterised. The enzyme had a specific activity of 1,436 μmol min−1 mg−1 and 1,011 μmol min−1 mg−1 protein when the reaction was initiated with glucose-6-phosphate and fructose-6-phosphate, respectively. Activity was not affected by erythrose-4-phosphate, but was inhibited by 6-P gluconate and glyceraldehyde-3-phosphate. A polyclonal immune serum was raised against the purified enzyme, allowing the study of protein levels during the period of active lipid synthesis in seeds. These results were compared with PGI activity profiles and mRNA expression levels obtained from Q-PCR studies. Our results point to the existence of a possible post-translational regulatory mechanism during seed development. Immunolocalisation of the protein in seed tissues further indicated that cPGI is highly expressed in the procambial ring.  相似文献   

13.
Summary The rag2 mutant of Kluyveromyces lactis cannot grow on glucose when mitochondrial functions are blocked by various mitochondrial inhibitors, suggesting the presence of a defect in the fermentation pathway. The RAG2 gene has been cloned from a K. lactis genomic library by complementation of the rag2 mutation. The amino acid sequence of the RAG2 protein deduced from the nucleotide sequence of the cloned RAG2 gene shows homology to the sequences of known phosphoglucose isomerases (PGI and PHI). In vivo complementation of the pgi1 mutation in Saccharomyces cerevisiae by the cloned RAG2 gene, together with measurements of specific PGI activities and the detection of PGI proteins, confirm that the RAG2 gene of K. lactis codes for the phosphoglucose isomerase enzyme. Complete loss of PGI activity observed when the coding sequence of RAG2 was disrupted leads us to conclude that RAG2 is the only gene that codes for phosphoglucose isomerase in K. lactis. The RAG2 gene of K. lactis is expressed constitutively, independently of the growth substrates (glycolytic or gluconeogenic). Unlike the pgi1 mutants of S. cerevisiae, the K. lactis rag2 mutants can still grow on glucose, however they do not produce ethanol.  相似文献   

14.
Lipid peroxidation in cellular membranes leads to the formation of toxic aldehydes. One product provided with particular reactivity has been identified as 4-hydroxynonenal and thoroughly studied as one of the possible mediators of the cellular injury induced by pro-oxidants. In the present study we have searched for the presence of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice, since under this experimental condition the level of lipid peroxidation is much greater than in the case of CCl4 or BrCCl3 hepatotoxicity. 4-Hydroxynonenal was looked for in liver extracts as either free aldehyde or its 2,4-dinitrophenylhydrazone derivative. In both cases, by means of thin-layer chromatography (TLC) and high-pressure liquid chromatography, a well resolved peak corresponding to the respective standards (free aldehyde or 2,4-dinitrophenylhydrazone derivative) was obtained. Total carbonyls present in the liver of intoxicated animals were detected as 2,4-dinitrophenylhydrazone derivatives. The hydrazones were pre-separated by TLC into three fractions according to different polarity (polar, non-polar, fraction I, and non-polar, fraction II). The amounts of carbonyls present in each fraction were determined by ultraviolet-visible spectroscopy. 'Non-polar carbonyls, fraction II' were further fractionated by TLC. The fraction containing alkanals and alk-2-enals was analyzed by high-pressure liquid chromatography and several aldehydes were identified. In addition, protein bound carbonyls were determined in the liver of bromobenzene-treated mice. The biological implications of the finding of 4-hydroxynonenal and other carbonyls in vivo in an experimental model of hepatotoxicity are discussed.  相似文献   

15.
Several enzymes of non–photosynthetic sugar phosphate and starch metabolism were measured in gradient–purified chloroplasts from normal rye leaves ( Secale cereale L. cv. Halo) grown at 22°C and in the non-photosynthetic plastids isolated from 70S ribosome-deficient rye leaves grown at a non–permissive elevated temperature of 32°C. Activities of the enzymes phosphoglycerate kinase (EC 2.7.2.3), hexokinase (EC 2.7.1.1), phosphoglucose isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate de-hydrogenase (EC 1.1.1.46), ADPglucose pyrophosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21), and phosphorylase (EC 2.4.1.1) were present in ribosome-deficient plastids from 32°C-grown leaves indicating a cytoplasmic origin of the plastid-specific forms of these enzymes. While the photosynthetic marker enzyme NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) was considerably diminished, both the specific activities and the total activities per leaf of the plastid-specific forms of hexokinase, phosphoglucose isomerase and phosphoglucomutase were markedly increased in the ribosome–deficient plastids, relative to normal chloroplasts. The results demonstrate that after elimination of functional protein synthesis in the chloroplasts the supply of chloroplast–specific enzymes by the cytoplasm is not generally suppressed as observed for many enzymes and proteins involved in photosynthesis, but may even be increased in accord with changed metabolic demands.  相似文献   

16.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

17.
Summary The xylose isomerase genes (xylA) from Thermoanaerobacterium thermosulfurogenes and Streptomyces rubiginosus were introduced and expressed in three plant species (potato, tobacco and tomato) and transgenic plants were selected on xylose-containing medium. The xylose isomerase genes were transferred to explants of the target plant by Agrobacterium-mediated transformation. The xylose isomerase genes were expressed under the control of the enhanced cauliflower mosaic virus 35S promoter and the Ω′ translation enhancer sequence from tobacco mosaic virus. In potato and tomato, xylose isomerase selection was more efficient than the established kanamycin selection. The level of enzyme activity in the regenerated transgenic plants selected on xylose was 5–25-fold higher than the enzyme activity in control plants selected on kanamycin. The xylose isomerase system enables transgenic cells to utilize xylose as a carbohydrate source. In contrast to antibiotic or herbicide resistance-based system where transgenic cells survive on a selective medium but nontransgenic cells are killed, the xylose system is an example of a positive selection system where transgenic cells proliferate while non-transgenic cells are starved but still survive. The results show that a new selection method, is established. The xylose system is devoid of the disadvantages of antibiotic or herbicide selection, and depends on an enzyme which is already being widely utilized in specific food processes and that is generally recognized as safe for use in the starch industry.  相似文献   

18.
Three low-cost drying methods (sun, solar, and draft oven) were optimized to produce Spirulina powder of optimal quality. Optimization in the pre-dehydration stage included the use of two antioxidants, α-tocopherol and tertiary-butyl hydroquinone (TBHQ), and two blanching methods, microwave and water bath, to inactivate enzymes. The efficiency of the pre-dehydration treatments at minimizing lipid peroxidation were evaluated in terms of the product’s oxidative stability using the thiobarbituric acid (TBA) test. The sample with the lowest TBA reactive substance (TBARS) value was considered the most stable. TBHQ was found to be significantly better than α-tocopherol in minimizing lipid peroxidation in blanched samples while α-tocopherol was better than TBHQ in unblanched samples. Microwave blanching exerted a greater stabilizing effect than water bath blanching. The combined effect of TBHQ and microwave blanching was found to be the most effective pre-dehydration treatment for minimizing lipid peroxidation in drying Spirulina. Among the three low-cost optimized drying methods, sun-drying produced a dried product with the lowest TBARS value (0.472 mg malondialdehyde.kg−1), which was closest to that of the spray-dried (control) sample (0.434 mg MDA.kg−1). Draft oven and solar drying produced dried products with the same average TBARS value (0.56 mg MDA.kg−1). Sun-drying, when optimized, produced a dried product that was almost as stable as the spray-dried product. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines  相似文献   

19.
Phosphoglucose isomerase has been purified from crude extracts of Escherichia coli K10. Two forms of the enzyme were separated during the purification procedure. The major species comprises more than 90% of the enzyme activity, has an apparent molecular weight of about 125,000 and consists of two 59,000 molecular weight subunits; the minor species has an apparent size of 230,000 and consists of (possibly four) subunits of 59,000 molecular weight. Both enzyme forms have the same N-terminal amino acid, the same pH optimum of reaction and the same kinetic constants for the substrate fructose-6-phosphate and the inhibitor 6-phosphogluconate. They differ in that the minor species has half the specific enzyme activity compared to the major one and that its subunit polypeptide carries a higher electronegative charge. Since they are both coded by the pgi gene and since they show full immunological identity it seems that the minor species is a dimer of the major enzyme form and that dimerisation is caused by subunit modification. No physiological role could be found for the existence of the two forms. — Formation of phosphoglucose isomerase is under respiratory control: under anaerobiosis the enzyme (both species) is derepressed parallely with other glycolytic enzymes.Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

20.
Summary The apparent molecular weight of cytosolic phosphoglucose isomerase (PGI) subunits was evaluated in 18 species of Clarkia which have or do not have duplicated genes specifying this glycolytic enzyme. Species that lack the duplication had subunits of 59,000 or 60,400 whereas species with the duplication generally possessed two types of PGI subunits with these or closely similar molecular weights. The additive pattern in the species with the duplication suggests that the molecular weight divergence preceded the origin of the duplication, and that the duplication arose following hybridization between taxa that represented different lineages within Clarkia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号