首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B virus (HBV) and hepatitis C virus (HCV) coinfection is not uncommon as a result of similar routes of infection. Patients who are coinfected represent a unique group with diverse serologic profiles. Combined chronic hepatitis B and C leads to more severe liver disease and an increased risk of hepatocellular carcinoma. Furthermore, coinfected patients represent a treatment challenge. No standard recommendations exist for treatment of viral hepatitis due to dual HBV/HCV infection, and therefore treatment must be individualized based on patient variables such as serologic and virologic profiles, patient's prior exposure to antiviral treatment, and the presence of other parenterally transmitted viruses such as hepatitis D virus and human immunodeficiency virus. The natural history and treatment of patients with HBV and HCV coinfection is reviewed.  相似文献   

2.
Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication, we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα), as being required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV-infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.  相似文献   

3.
Infection with hepatitis C virus (HCV) is one of the leading causes of chronic hepatitis, liver cirrhosis and end-stage liver disease worldwide. The genetics of HCV infection in humans and the disease course of chronic hepatitis C are both remarkably variable. Although the response to interferon treatment is largely dependent on HCV genotypes, whether or not a relationship exists between HCV genome variability and clinical course of hepatitis C disease still remains unknown. To more thoroughly understand HCV genome evolution over time in association with disease course, near genome-wide HCV genomes present in 9 chronically infected participants over 83 total study years were sequenced. Overall, within HCV genomes, the number of synonymous substitutions per synonymous site (d(S)) significantly exceeded the number of non-synonymous substitutions per site (d(N)). Although both d(S) and d(N) significantly increased with duration of chronic infection, there was a highly significant decrease in d(N)/d(S) ratio in HCV genomes over time. These results indicate that purifying selection acted to conserve viral protein structure despite persistence of high level of nucleotide mutagenesis inherent to HCV replication. Based on liver biopsy fibrosis scores, HCV genomes from participants with advanced fibrosis had significantly greater d(S) values and lower d(N)/d(S) ratios compared to participants with mild liver disease. Over time, viral genomes from participants with mild disease had significantly greater annual changes in d(N), along with higher d(N)/d(S) ratios, compared to participants with advanced fibrosis. Yearly amino acid variations in the HCV p7, NS2, NS3 and NS5B genes were all significantly lower in participants with severe versus mild disease, suggesting possible pathogenic importance of protein structural conservation for these viral gene products.  相似文献   

4.
The pathogenic implications of hepatitis G virus (HGV) infection are still unclear. We searched for the presence of HGV RNA and HCV RNA sequences in liver and serum samples from 10 patients with chronic liver disease, 9 of whom were coinfected with HCV. All livers were negative for the presence of the HGV RNA minus strand and only six were positive for the presence of the positive strand, albeit at low levels. In striking contrast, the HCV RNA positive strand was detectable in the liver samples from all nine HCV-positive patients in titers ranging from 10(2) to 10(8) genomic eq/microg of RNA, and the negative HCV RNA strand was present in all but two of these patients. However, the positive-strand RNA titers in serum for the two viruses had similar ranges. These findings imply that the liver is not the primary replication site for HGV, at least in the population of HCV/HGV-coinfected patients. Absence of replication in liver tissue may explain the reported lack of influence of HGV coinfection on the course of chronic hepatitis C.  相似文献   

5.
Hepatitis C (HCV) is a viral disease affecting millions of people worldwide, and persistent HCV infection can lead to progressive liver disease with the development of liver cirrhosis and hepatocellular carcinoma. During treatment for hepatitis C, the occurrence of viral resistance is common. To reduce the occurrence of resistance, new viral treatments should target both viral and cellular factors. Many interactions occur between viral and host proteins during the HCV replication cycle and might be used for the development of new therapies against hepatitis C. Heat shock protein 90 (Hsp90) plays a role in the folding of cellular and viral proteins and also interacts with HCV proteins. In the present study, we knocked down the expression of the Hsp90 gene and inhibited viral replication using siRNA molecules. Reducing the expression of Hsp90 successfully decreased HCV replication. All siRNA molecules specific to the viral genome showed the efficient inhibition of viral replication, particularly siRNA targeted to the 5′UTR region. The combination of siRNAs targeting the viral genome and Hsp90 mRNA also successfully reduced HCV replication and reduced the occurrence of viral resistance. Moreover, these results suggest that an approach based on the combination of cellular and viral siRNAs can be used as an effective alternative for hepatitis C viral suppression.  相似文献   

6.
丙型肝炎病毒(HCV)感染个体后在宿主细胞内长时间保持低水平复制,与慢性肝炎、肝硬化及肝细胞肝癌的发生密切相关.目前,HCV感染后肝细胞发生转化的具体机制还不清楚.非结构蛋白5B(NS5B)是HCV编码的非结构蛋白之一,具有RNA依赖的RNA聚合酶活性(RdRp),是病毒复制所需的关键酶.除参与病毒复制外,NS5B通过...  相似文献   

7.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

8.
Kai Lin 《中国病毒学》2010,25(4):246-266
Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NSSB polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design,potent and specific inhibitors of NS3 and NSSB have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NSSA are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.  相似文献   

9.
An estimated 170 million individuals worldwide are infected with hepatitis C virus (HCV), a serious cause of chronic liver disease. Current interferon-based therapy for treating HCV infection has an unsatisfactory cure rate, and the development of more efficient drugs is needed. During the early stages of HCV infections, various host genes are differentially regulated, and it is possible that inhibition of host proteins affords a therapeutic strategy for treatment of HCV infection. Using an HCV subgenomic replicon cell culture system, here we have identified, from a secondary fungal metabolite, a lipophilic long-chain base compound, NA255 (1), a previously unknown small-molecule HCV replication inhibitor. NA255 prevents the de novo synthesis of sphingolipids, major lipid raft components, thereby inhibiting serine palmitoyltransferase, and it disrupts the association among HCV nonstructural (NS) viral proteins on the lipid rafts. Furthermore, we found that NS5B protein has a sphingolipid-binding motif in its molecular structure and that the domain was able to directly interact with sphingomyelin. Thus, NA255 is a new anti-HCV replication inhibitor that targets host lipid rafts, suggesting that inhibition of sphingolipid metabolism may provide a new therapeutic strategy for treatment of HCV infection.  相似文献   

10.
More effective therapies are urgently needed against hepatitis C virus (HCV), a major cause of viral hepatitis. We used in vitro protein expression and microfluidic affinity analysis to study RNA binding by the HCV transmembrane protein NS4B, which plays an essential role in HCV RNA replication. We show that HCV NS4B binds RNA and that this binding is specific for the 3' terminus of the negative strand of the viral genome with a dissociation constant (Kd) of approximately 3.4 nM. A high-throughput microfluidic screen of a compound library identified 18 compounds that substantially inhibited binding of RNA by NS4B. One of these compounds, clemizole hydrochloride, was found to inhibit HCV RNA replication in cell culture that was mediated by its suppression of NS4B's RNA binding, with little toxicity for the host cell. These results yield new insight into the HCV life cycle and provide a candidate compound for pharmaceutical development.  相似文献   

11.
The influence of viral factors on the severity of hepatitis C virus (HCV)-related liver disease is controversial. We studied 68 liver transplant patients with recurrent hepatitis C, of whom 53 were infected by genotype 1 strains. Relationships between core sequences, serum HCV RNA levels, and fibrosis scores for each patient were analyzed in pairwise fashion 5 years after transplantation. We used Mantel's test, a matrix correlation method, to evaluate the correspondence between measured genetic distances and observed phenotypic differences. No clear relationship was found when all 68 patients were analyzed. In contrast, when the 53 patients infected by genotype 1 strains were analyzed, a strong positive relationship was found between genetic distance and differences in 5-year fibrosis scores (P = 0.001) and differences in virus load (P = 0.009). In other words, the smaller the genetic distance between two patients' viral core sequences, the smaller the difference between the two patients' fibrosis scores and viral replication levels. No relationship was found between genetic distance and differences in age, sex, or immunosuppression. In multivariate analysis, the degree of fibrosis was negatively related to the virus load (r = -0.68; P = 0.003). In the particular setting of liver transplantation, and among strains with closely related phylogenetic backgrounds (genotype 1), this study points to a correlation between the HCV genetic sequence and the variability of disease expression.  相似文献   

12.
Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.  相似文献   

13.
After infection by hepatitis C virus (HCV), a minority of patients develop acute symptomatic disease and some of them are able to clear the virus. In this study, we analyzed peripheral blood mononuclear cells from nine patients with acute symptomatic disease with respect to their cytotoxic T lymphocyte (CTL) response using a panel of HCV-derived peptides in a semiquantitative secondary in vitro culture system. We could detect early CTL responses in 67% of these patients. The CTL responses were directed against multiple viral epitopes, in particular within the structural (core 2-9, core 35-44, core 131-140, and core 178-187) and nonstructural regions of the virus (NS3 1073-1081, NS3 1406-1415, NS4 1807-1816, NS5 2252-2260, and NS5B 2794-2802). We compared the CTL responses displayed by recently and chronically infected HLA-A2-positive patients. Virus-specific CTLs were detectable in chronic carriers but the percentage of positive peptide-specific CTL responses was significantly higher in recently infected patients (P = 0.002). Follow-up of recently infected patients during subsequent disease development showed a significant decrease in the values and proportions of positive peptide-specific CTL responses (P = 0.002 and 0.013, respectively). Patients with limited viral replication exhibited significantly more vigorous early responses (P = 0.024). These data suggest a protective role for the early antiviral CTL response in HCV infection.  相似文献   

14.
Liver failure from chronic hepatitis C is the leading indication for liver transplantation in the United States. However, the pathogenesis of liver injury resulting from chronic hepatitis C virus (HCV) infection is not well understood. To examine the relationship between HCV replication in liver tissue and hepatocellular injury, a strand-specific in situ hybridization procedure was developed. The sensitivity and specificity of digoxigenin-labeled riboprobes were optimized by analyzing Northern blots and cell lines expressing HCV RNAs. For the current study, both genomic (sense) and replicative-intermediate (antisense) HCV RNAs were detected and quantified in 8 of 8 liver tissue specimens from infected patients versus 0 of 11 liver tissue specimens from noninfected controls. The distribution pattern for HCV replicative-intermediate RNA in liver was different from that for HCV genomic RNA. HCV genomic RNA was variably distributed throughout infected livers and was located primarily in the cytoplasm of hepatocytes, with some signal in fibroblasts and/or macrophages in the surrounding fibroconnective tissue. However, HCV replicative-intermediate RNA showed a more focal pattern of distribution and was exclusively localized in the cytoplasm of hepatocytes. There was no significant relationship between the distribution pattern for HCV genomic RNA and any indices of hepatocellular injury. However, a highly significant correlation was observed between the percentage of cells staining positive for replicative-intermediate RNA and the degree of hepatic inflammatory activity (P, < 0.0001). Furthermore, the ratio of cells staining positive for HCV replicative-intermediate versus genomic RNA correlated with the histological severity of liver injury (P, 0. 0065), supporting the hypothesis that active replication of HCV in liver tissue may be a significant determinant of hepatocellular injury.  相似文献   

15.
The hepatitis C virus (HCV) RNA replicates in hepatic cells by forming a replication complex on the lipid raft (detergent-resistant membrane [DRM]). Replication complex formation requires various viral nonstructural (NS) proteins as well as host cellular proteins. In our previous study (C. K. Lai, K. S. Jeng, K. Machida, and M. M. Lai, J. Virol. 82:8838-8848, 2008), we found that a cellular protein, annexin A2 (Anxa2), interacts with NS3/NS4A. Since NS3/NS4A is a membranous protein and Anxa2 is known as a lipid raft-associated scaffold protein, we postulate that Anxa2 helps in the formation of the HCV replication complex on the lipid raft. Further studies showed that Anxa2 was localized at the HCV-induced membranous web and interacted with NS4B, NS5A, and NS5B and colocalized with them in the perinuclear region. The silencing of Anxa2 decreased the formation of membranous web-like structures and viral RNA replication. Subcellular fractionation and bimolecular fluorescence complementation analysis revealed that Anxa2 was partially associated with HCV at the lipid raft enriched with phosphatidylinositol-4-phosphate (PI4P) and caveolin-2. Further, the overexpression of Anxa2 in HCV-nonsusceptible HEK293 cells caused the enrichment of HCV NS proteins in the DRM fraction and increased the colony-forming ability of the HCV replicon. Since Anxa2 is known to induce the formation of the lipid raft microdomain, we propose that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex.  相似文献   

16.
Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.  相似文献   

17.
Lan S  Wang H  Jiang H  Mao H  Liu X  Zhang X  Hu Y  Xiang L  Yuan Z 《FEBS letters》2003,554(3):289-294
It has been suggested that cellular proteins are involved in hepatitis C virus (HCV) RNA replication. By using the yeast two-hybrid system, we isolated seven cDNA clones encoding proteins interacting with HCV RNA polymerase (NS5B) from a human liver cDNA library. For one of these, alpha-actinin, we confirmed the interaction by coimmunoprecipitation, immunofluorescent staining and confocal microscopic analysis. Experiments with deletion mutants showed that domains NS5B(84-95), NS5B(466-478), and alpha-actinin(621-733) are responsible for the interaction. Studies of the HCV subgenomic replicon system with small interference RNA indicate that alpha-actinin is essential for HCV RNA replication. Our results suggest alpha-actinin may be a component of the HCV replication complex.  相似文献   

18.
Clinical data suggest that iron is a negative factor in chronic hepatitis C; however, the molecular mechanisms by which iron modulates the infectious cycle of hepatitis C virus (HCV) remain elusive. To explore this, we utilized cells expressing a HCV replicon as a well-established model for viral replication. We demonstrate that iron administration dramatically inhibits the expression of viral proteins and RNA, without significantly affecting its translation or stability. Experiments with purified recombinant HCV RNA polymerase (NS5B) revealed that iron binds specifically and with high affinity (apparent Kd: 6 and 60 microM for Fe2+ and Fe3+, respectively) to the protein's Mg2+-binding pocket, thereby inhibiting its enzymatic activity. We propose that iron impairs HCV replication by inactivating NS5B and that its negative effects in chronic hepatitis C may be primarily due to attenuation of antiviral immune responses. Our data provide a direct molecular link between iron and HCV replication.  相似文献   

19.
20.
The frequency that multiple different subtypes of hepatitis C virus (HCV) simultaneously infect a given individual is controversial. To address this question, heteroduplex mobility analysis (HMA) of portions of the HCV core and envelope 1 region was optimized for sensitive and specific detection of mixtures of HCV genomes of different genotype or subtype. Using the standard HCV genotyping approach of 5'-untranslated region (UTR) analysis, 28 of 374 (7.5%) chronic hepatitis C research subjects were classified as having either multiple-subtype HCV infections (n = 21) or switching HCV subtypes over time (n = 7), the latter pattern implying viral superinfection. Upon retesting of specimens by HMA, 25 of 28 multiple-subtype results could not be reproduced. All three patients with positive results were injection drug users with potential multiple HCV exposures. To address the hypothesis of tissue sequestration of multiple-subtype HCV infections, liver (n = 22), peripheral blood mononuclear cell (n = 13), perihepatic lymph node (n = 16), and serum (n = 19) specimens from 23 subjects with end-stage hepatitis C were collected and analyzed by the HMA technique. Whereas 5'-UTR results implicated mixed-subtype HCV infections in 2 subjects, HMA testing revealed no evidence of a second HCV subtype in any tissue compartment (0 of 70 compartments [0%]) or within any given subject (0 of 23 subjects [0%]). In summary, a large proportion of mixed-genotype and switching-genotype patterns generated by 5'-UTR analysis were not reproducible using the HMA approach, emphasizing the need for additional study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号