首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
The impact of supplemental ultraviolet-B (sUV-B; 280–315 nm; +7.2 kJ m?2 d?1) radiation was studied on various physiological parameters, antioxidative potential and metabolites of Solanum tuberosum L. cv. Kufri Badshah plants under varying levels of soil NPK. The N, P and K treatments were: the recommended dose of N, P and K; 1.5 times the recommended dose of N, P and K; 1.5 times the recommended dose of N and 1.5 times the recommended dose of K. The recommended NPK level provided maximum protection to photosynthetic assimilation under sUV-B radiation, while stomatal conductance was best at 1.5 times the recommended NPK. Carbon dioxide assimilation declined maximally at 1.5 times the recommended N/K under sUV-B radiation. Plants grown at the recommended NPK and 1.5 times the recommended NPK levels showed higher superoxide dismutase, peroxidase and ascorbate peroxidase activities under sUV-B radiation compared to 1.5 times the recommended N/K levels. sUV-B significantly increased total phenolics and flavonoids in plants at the recommended and 1.5 times the recommended NPK, while flavonoids declined at 1.5 times the recommended N. This study clearly showed that NPK amendment provided maximum protection to photosynthetic assimilation of potato plants under sUV-B radiation, activating the antioxidative defense system as well as flavonoids. NPK at 1.5 times the recommended dose, however, did not cause any additional benefit to photosynthetic carbon fixation; hence the recommended dose of NPK is found to be the best suited dose of fertilizer under ambient as well as sUV-B regime.  相似文献   

2.
The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280–315 nm; 7.2 kJ m?2 day?1) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress more than spinach at all nutrient levels and 1.5× recommended NPK lowered the sensitivity maximally to enhanced UV-B with respect to photosynthesis, biomass and yield. PCA score has also confirmed the lower sensitivity of amaranthus compared with spinach with respect to the measured physiological and biochemical parameters.  相似文献   

3.
Current and projected increases in ultraviolet‐B (UV‐B; 280–315 nm) radiation may alter crop growth and yield by modifying the physiological and biochemical functions. This study was conducted to assess the possibility of alleviating the negative effects of supplemental UV‐B (sUV‐B; 7.2 kJ m?2 day?1; 280–315 nm) on radish (Raphanus sativus var Pusa Himani) by modifying soil nitrogen (N), phosphorus (P) and potassium (K) levels. The N, P and K treatments were recommended dose of N, P and K, 1.5 times recommended dose of N, P and K, 1.5 times recommended dose of N and 1.5 times recommended dose of K. Plants showed variations in their response to UV‐B radiation under varying soil NPK levels. The minimum damaging effects of sUV‐B on photosynthesis rate and stomatal conductance coupled with minimum reduction in chlorophyll content were recorded for plants grown at recommended dose of NPK. Flavonoids increased under sUV‐B except in plants grown at 1.5 times recommended dose of N. Lipid peroxidation (LPO) also increased in response to sUV‐B at all NPK levels with maximum at 1.5 times recommended dose of K and minimum at recommended dose of NPK. This study revealed that sUV‐B radiation negatively affected the radish plants by reducing the photosynthetic efficiency and increasing LPO. The plants grown at 1.5 times recommended dose of NPK/N/K could not enhance antioxidative potential to the extent as recorded at recommended dose of NPK and hence showed more sensitivity to sUV‐B.  相似文献   

4.
《农业工程》2020,40(5):388-397
Today, to achieve sustainable agriculture with maximum yield and minimum environmental risks, the use of nanofertilizers has riveted ample consideration. Field experiments were conducted during binary season of 2016 and 2017 at Research Farm, Faculty of Agriculture, Minia University, Egypt to estimate whether NPK nanofertilizers applied in equivalent or lower rates could replace recommended levels of NPK chemical fertilizers in potato farming systems without retrograde effects upon yield production or quality. Impacts of recommended rates of NPK chemical fertilizers (control treatments) compared to NPK nanofertilizers in equivalent or lower rates (100%, 50% and 25%), foliar or soil applied on potato productivity and quality were studied.Compared with control treatments, plots receiving foliar application of NPK nanofertilizers at 50% or 25% of recommended level showed higher values of economic yield (23.59-ton ha−1), starch rates (79.62%), NPK nutrient use efficiency (67.74, 278.92, 118.54 kg potato/kg nutrient), harvest index (59.24%) and only lower potato nitrate content (1.15 g kg−1) as a harmful indicator. Among all treatments, foliar application of NPK nanofertilizers at 50% rate was found to be the most economical treatment as it gave highest potato yield and quality plus highest profit: cost ratio of potato production. This research recommends foliar application of nanofertilizers in potato production to increase production and quality compared to soil applications. As yet, using lower rates of nanofertilizers as foliar application in the present study proved to be an eco-friendly environmental and economic alternative to recommended rates of chemical fertilizers with significant increase in potato productivity and quality.  相似文献   

5.
A field experiment with groundnut as test crop was conducted to evaluate the manurial potential of three distillery effluents: raw spent wash (RSW), biomethanated spent wash (BSW) and lagoon sludge (LS) vis-à-vis recommended fertilizers (NPK + farm yard manure (FYM)) and a control (no fertilizer or distillery effluent). It was found that all the three distillery effluents increased total chlorophyll content, crop growth rate (CGR), total dry matter, nutrient uptake (N, P and K) and finally seed yield compared to the control but inhibited nodulation and decreased nitrogen fixation. Among the three distillery effluents, BSW produced the highest seed yield (619 kg ha(-1)) twice that of control (3.10 kg ha(-1)), followed by RSW (557 kg ha(-1)) and LS (472 kg ha(-1)). However, the distillery effluents did not influence protein and oil contents. It was concluded that these distillery effluents because of their high manurial potential could supply nutrients, particularly potassium, nitrogen and sulphur, to the crops and thus reduce the fertilizer requirement of crops. Nevertheless, the crop performance and yield with three distillery effluents were overall less than that produced by recommended NPK + FYM probably on account of failure of the effluents to supply balanced nutrition to the plants for achieving their potential growth capacity.  相似文献   

6.
In the present study, the response of kidney bean (Phaseolus vulgaris L. cv. Pusa Komal) plants was evaluated under three different levels of ultraviolet-B (UV-B), i.e., excluded UV-B (eUV-B), ambient UV-B (aUV-B; 5.8 kJ m?2 day?1), and supplemental UV-B (sUV-B; 280–315 nm; ambient?+?7.2 kJ m?2 day?1), under near-natural conditions. eUV-B treatment clearly demonstrated that both aUV-B and sUV-B are capable of causing significant changes in the plant’s growth, metabolism, economic yield, genome template stability, total protein, and antioxidative enzyme profiles. The experimental findings showed maximum plant height at eUV-B, but biomass accumulation was minimum. Significant reductions in quantum yield (Fv/Fm) were observed under both aUV-B and sUV-B, as compared to eUV-B. UV-B-absorbing flavonoids increased under higher UV-B exposures with consequent increments in phenylalanine ammonia lyase (PAL) activities. The final yield was significantly higher in plants grown under eUV-B, compared to those under aUV-B and sUV-B. Total protein profile through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analysis of isoenzymes, like superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR), through native PAGE revealed major changes in the leaf proteome under aUV-B and sUV-B, depicting induction of some major stress-related proteins. The random amplified polymorphic DNA (RAPD) profile of genomic DNA also indicated a significant reduction of genome template stability under UV-B exposure. Thus, it can be inferred that more energy is diverted for inducing protection mechanisms rather than utilizing it for growth under high UV-B level.  相似文献   

7.
To determine the function of cytosolic phosphorylase (Pho2; EC 2.4.1.1), transgenic potato plants were created in which the expression of the enzyme was inhibited by introducing a chimeric gene containing part of the coding region for cytosolic phosphorylase linked in antisense orientation to the 35S CaMV promotor. As revealed by Northern blot analysis and native polyacrylamide gel electrophoresis, the expression of cytosolic phosphorylase was strongly inhibited in both leaves and tubers of the transgenic plants. The transgenic plants propagated from stem cuttings were morphologically indiscernible from the wild-type. However, sprouting of the transgenic potato tubers was significantly altered: compared with the wild-type, transgenic tubers produced 2.4 to 8.1 times more sprouts. When cultivated in the greenhouse, transgenic seed tubers produced two to three times more shoots than the wild-type. Inflorescences appeared earlier in the resulting plants. Many of the transgenic plants flowered two or three times successively. Transgenic plants derived from seed tubers formed 1.6 to 2.4 times as many tubers per plant as untransformed controls. The size and dry matter content of the individual tubers was not noticeably altered. Tuber yield was significantly higher in the transgenic plants. As revealed by carbohydrate determination of freshly harvested and stored tubers, starch and sucrose pools were not noticeably affected by the antisense inhibition of cytosolic phosphorylase; however, glucose and fructose levels were markedly reduced after prolonged storage. These results favour the view that cytosolic phosphorylase does not participate in starch degradation. The possible links between the reduced levels of cytosolic phosphorylase and the observed changes with respect to sprouting and flowering are discussed.  相似文献   

8.
Critical leaf nutrient concentrations have often been used to diagnose the nutritional causes of crop underperformance. Unfortunately, these diagnostic criteria are not available for mature, tuber-bearing sweet potato plants (the word ‘tuber’ being used to describe a swollen root rather than a swollen stem). The Diagnosis and Recommendation Integrated System (DRIS), however, provides a reliable means of linking leaf nutrient concentrations to the yield of sweet potato tubers, and may be developed for this crop using existing data from regional crop surveys. In the present study, tuber yield and leaf nutrient concentration data from a survey of sweet potato gardens conducted in the Papua New Guinea (PNG) highlands in 2005 were used to establish DRIS N, P, K, and S norms and statistical parameters for sweet potato. Although the database was relatively small, the norms derived for nutrient ratios of key biological significance, i.e. N/S and K/N, were within the expected narrow ranges for higher plants, giving credibility to both the database and the DRIS model. Data from future surveys and field trials may subsequently be used to enlarge the database allowing the refinement of model parameters and hopefully an expansion of diagnostic scope to include other macro and micro-nutrients. As it stands, though, this preliminary DRIS model for sweet potato is possibly the best diagnostic tool currently available for evaluating the N, P, K and S statuses of sweet potato crops in the pacific region.  相似文献   

9.
Field study was conducted to evaluate the inter- and intra-specific variations in sensitivity of two cultivars each of wheat (Triticum aestivum L. cv. HD 2329 and HUW 234) and mung bean (Vigna radiata L. cv. Malviya Jyoti and Malviya Janpriya) to supplemental levels of UV-B irradiation (sUV-B, 280–315 nm) with and without recommended levels of mineral nutrients. Results showed decrease in photosynthetic pigments and biomass of all the four cultivars due to sUV-B radiation. Antioxidative defense system was activated in all the cultivars after irradiation with sUV-B. SOD, peroxidase and total thiol contents increased, while catalase activity and ascorbic acid contents decreased under sUV-B irradiation. On the basis of biomass, UV-B sensitivity can be arranged in decreasing order as: Malviya Janpriya < Malviya Jyoti < HD 2329 < HUW 234. Application of mineral nutrients (N, P and K) showed significant positive response in all cultivars by ameliorating the negative impact of sUV-B.  相似文献   

10.
This work focuses on the comparison of field characteristics and amounts of reducing sugars in cold-stored tubers of transgenic plants derived from two potato cultivars. The bacterial gene coding for phosphofructokinase under the tuber-specific promoter was used to support the glycolysis in stored tubers. While the tubers from untransformed control plants steadily accumulated reducing sugars during cold storage, the tubers from transformed plants regardless the genotype were characterized by subsequent decrease in the sugar content. After long period of cold storage the greatest reduction in the reducing sugar content was by more than 60 % compared to control. Before the storage, however, the content of reducing sugars was in 80 % of transgenic lines higher than in control ones. The plants evaluated in field trials for their appearance showed any changes in growth characteristics in about 25 % of the transgenic lines. Despite the introduced modification of sugar metabolism the yield of transgenic plants with normal appearance did not differ significantly from the yield of control plants.  相似文献   

11.
1. Experiments were carried out in Hangchow on the increase of dry matter in the tops of sweet potato plants. The increase can be divided into three periods: (1) slow accumulation of dry matter; (2) rapid increase of accumulation of dry matter, reaching a maximum; (3) decline of accumulation of dry matter, later on account of senility and the dropping of leaves, there was a marked reduction in the dry matter of the tops. The increase in dry matter is in proportion to the leaf area. The amount of fertilizer used is closely related to the increase of dry matter and leaf area. 2. The yield of sweet potato is related to the increase in dry matter of the tops of the plant. To a certain extent, the greater the amount of dry matter, the more rapidly will the tubers enlarge, finally results in a higher yield. Excessive use of fertilizer leads to an abnormal elongation of the plant. During this period an increase in dry matter of the tops not only fails to induce the enlargement of the tubers, but also leads to the consumption of the dry matter, and consequently causes a reduction in yield of sweet potato. From the curve of T/R ratio, the sooner the downward translocation of the tops nutrients occurs, the faster the tubers will form and enlarge. 3. Experiments with p32 show that the various growth conditions of the tops are closely correlated with the translocation of the tubers. With well growing and high yielding plants the nutrients move from the tops to the tubers as soon as the root enlarges. This translocation is even accelerated during the later stage. During the earlier stage of development, much of the plant nutrition is translocated to the stems and leaves, particularly to the latter; then gradually it is diverted to the leaves and the root system, and finally concentrates in the roots. The increase of the area of green leaves and the number of branches during the period of early growth, and the promoting of favourable conditions for the formation and enlargement of the roots, as well as the facilitating of the translocation of nutrients to the roots during the later stage are the determinative factors necessary for obtaining high yield of sweet potato.  相似文献   

12.
Glycine max (L.) Merr plants were grown outdoors in potted sand exposed to elevated ultraviolet-B (UV-B) radiation provided by filtered fluorescent lamps to determine the effects of UV-B on seed yield and UV-B-induced carryover effects in the F1 generation. Increased UV-B radiation had no detectable effects on reproductive parameters except for a reduction on seed number per plant and an increase in the number of unseeded pods per plant and dry weight of unseeded pods per plant in the field supplemental UV-B experiment. Studies on carryover effects in the greenhouse progeny growth trial also showed no effect of parental treatment with UV-B on biomass production, and most symbiotic-N traits and plant metabolite measured. However, the concentrations of N in nodules and starch in roots were significantly increased in the F1 generation progeny from elevated UV-B radiation relative to their F1 counterparts from ambient radiation. Assessing the effects of seed size on plant growth and symbiotic function in the F1 progeny showed that total biomass, dry matter yield of individual organs (leaves, stems, roots and nodules), total plant N and fixed-N rose with increasing seed size. Seed concentration of flavonoids was also enhanced with increasing seed size. These findings suggest that subtle changes did occur in the F1 generation progeny of parental plants exposed to elevated UV-B with potential to accumulate with further exposure to elevated UV-B radiation.  相似文献   

13.
Three experiments examined effects on growth, dry matter partitioning and nutrient uptake in potato plants grown in large pots under different combinations of adequate and deficient levels of nitrogen, phosphorus and potassium. N supply affected the growth of all leaves, with low N reducing both the size of individual leaves and the extent of branch growth. P and K availability affected the growth of later formed leaves and only when both were deficient was branch growth substantially reduced. At later stages of growth, total green leaf area was significantly reduced by deficiency of each of the nutrients. Partitioning of dry matter to tubers was markedly reduced by K deficiency and increased in one experiment by P deficiency. When both P and K were deficient, partitioning approximated that under non‐limiting conditions. Leaf weight ratio (LWR) was higher under K deficiency, but not when P was also deficient, and was consistently higher when the ratio of K : P in dry matter was less than approximately five. In these experiments, LWR was not consistently related to shoot N% and N supply had relatively little effect on partitioning. There were large treatment effects on tuber dry matter percentage, characterised by significant interactions especially between N and K. Deficiency of one nutrient increased the concentration of others but uptake was highly regulated as crop content of all three nutrients was reduced when the supply of any one was deficient. The results show that the response of potatoes to single deficiencies may be influenced greatly by the levels of other nutrients.  相似文献   

14.
Impact of supplemental UV-B (sUV-B) has been investigated on photosynthetic pigments, antioxidative enzymes, metabolites, and protein profiling of radish plants under realistic field conditions. Exposure of sUV-B leads to oxidative damage in plants. However, plants possess a number of UV-protection mechanisms including a stimulation of antioxidant defense system. It caused alteration in reactive oxygen species metabolism primarily by decreasing catalase activity vis-à-vis enhanced activities of other enzymatic (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbic acid) antioxidants. Qualitative analysis of samples also showed significant reductions in photosynthetic pigments and protein content. After sUV-B exposure, protein profile showed differences mainly at eight points—126.8, 84.8, 71.9, 61.5, 47.8, 40.6, 38.9, and 17.5 kDa, whereas protein(s) of 38.9 kDa showed increment. Results of the present investigation clearly showed the adverse effect of sUV-B on total biomass at final harvest.  相似文献   

15.
Two NPK factorial trials, one in Vietnam and one in The Netherlands were (re-)analyzed to find causes of success or failure with regard to sustained soil productivity, using the concept of crop nutrient equivalents (CNE). A (k)CNE is the quantity of a nutrient that, under conditions of balanced nutrition, has the same effect on yield as 1 (k)g of nitrogen. The percentages the nutrients take in the (k)CNE sum of N, P and K are plotted along the sides of a triangle. Soil, crop and input NPK are indicated in the triangle. Balanced crop NPK is found in the centre of the triangle, and required NPK inputs are on a straight line in the extension of the line trough the point of soil NPK and the centre. Experimental inputs were compared with inputs required for balanced NPK. In Vietnam, responses to P and soil available N:P:K pointed to severe shortage of P. Rice yields increased over time in dry but not in wet seasons. The lower yields in wet seasons were ascribed to insufficiently long periods between the dry and the next wet seasons for replenishment of labile soil P. In the Netherlands, four crops were grown in rotation on a former sea bottom. Only N had a strong effect on yield. Soil available N:P:K revealed low N, very high K and medium P. Recovery of fertilizer N was high because of capillary rise of groundwater and absence of leaching. In both trials, first-season chemical crop analysis would directly have detected disproportions of soil available N, P and K. This knowledge could have improved the experimental designs, optimized nutrient use efficiency and minimized losses of N and K to the environment.  相似文献   

16.
Acquisition of nutrients by plants is primarily dependent on root growth and bioavailability of nutrients in the rooting medium. Most of the beneficial bacteria enhance root growth, but their effectiveness could be influenced by the nutrient status around the roots. In this study, two 1-aminocyclopropane-1-carboxylate (ACC)-deaminase containing plant-growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens and P. fluorescens biotype F were tested for their effect on growth, yield, and nutrient use efficiency of wheat under simultaneously varying levels of all the three major nutrients N, P, and K (at 0%, 25%, 50%, 75%, and 100% of recommended doses). Results of pot and field trials revealed that the efficacy of these strains for improving growth and yield of wheat reduced with the increasing rates of NPK added to the soil. In most of the cases, significant negative linear correlations were recorded between percentage increases in growth and yield parameters of wheat caused by inoculation and increasing levels of applied NPK fertilizers. It is highly likely that under low fertilizer application, the ACC-deaminase activity of PGPR might have caused reduction in the synthesis of stress (nutrient)-induced inhibitory levels of ethylene in the roots through ACC hydrolysis into NH3 and α-ketobutyrate. The results of this study imply that these Pseudomonads could be employed in combination with appropriate doses of fertilizers for better plant growth and savings of fertilizers.  相似文献   

17.
A field experiment was conducted to determine the effects of integrated use of organic and inorganic nutrient sources with effective microorganisms on growth and yield of cotton. Treatments included: control; organic materials (OM); effective microorganisms (EM); OM+EM; mineral NPK (170:85:60 kg); 1/2 mineral NPK+EM; 1/2 mineral NPK+OM+EM and mineral NPK+OM+EM. OM and EM alone did not increase the yield and yield attributing components significantly but integrated use of both resulted in a 44% increase over control. Application of NPK in combination with OM and EM resulted in the highest seed cotton yield (2470 kg ha-1). Integrated use of OM+EM with 1/2 mineral NPK yielded 2091 kg ha-1, similar to the yield (2165 kg ha-1) obtained from full recommended NPK, indicating that this combination can substitute for 85 kg N ha-1. Combination of both N sources with EM also increased the concentrations of NPK in plants. Economic analysis suggested the use of 1/2 mineral NPK with EM+OM saves the mineral N fertilizer by almost 50% compared to a system with only mineral NPK application. This study indicated that application of EM increased the efficiency of both organic and mineral nutrient sources but alone was ineffective in increasing yield.  相似文献   

18.
UV-B increases the harvest index of bean (Phaseolus vulgaris L.)   总被引:2,自引:1,他引:1  
The effects of small changes in natural UV-B on the photosynthesis, pigmentation, flowering and yield of bean plants (Phaseolus vulgaris L. var. Label) were studied. To obtain a relatively natural growth environment, the plants were grown in small, half-open greenhouses of UV-transmitting Plexiglas of different thickness (3 and 5 mm), resulting in an 8% difference in the weighted UV-B reaching the plants. Although the UV-B doses used did not significantly influence photosynthesis on a leaf area basis during vegetative growth, important changes in biomass allocation were noted. A UV-B-O induced reduction in leaf area during the period of vegetative growth resulted in decreased dry weight after 57 d. During the flowering and pod-filling stages (57–79.d after planting), however, plants grown at high UV-B retained their photosynthetic capacity longer: maximal photosynthesis, chlorophyll and N content of the leaves were higher under the higher UV-B dose at a plant age of 79 d. Combined with an increased allocation under the higher UV-B dose of both N and biomass to the pods, this resulted in a small increase in yield and an important increase in harvest index with increased UV-B.  相似文献   

19.
Dry-matter accumulation was greater in staked than in unstaked plants of the lesser yam (Dioscorea esculenta). Staking, N and K application tended to increase the proportion of dry matter diverted into the tubers. Staking was the most important factor in increasing total tuber production, which was one and a half times greater in staked than in unstaked plants. Leaf-area development was closely and positively related to vine growth, and since staking and N application encouraged vine growth these treatments therefore led to the production of plants with greater leaf area. Leaf-area duration was increased by staking and N application and was closely and positively related to tuber yield. Staking and N application increased tuber number per plant while K application increased the size of individual tubers. Staking and K application increased bulking rate and both treatments increased the period of bulking by causing earlier tuber initiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号