首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The neuropeptide somatostatin inhibits hormone release from GH4C1 pituitary cells via two mechanisms: inhibition of stimulated adenylate cyclase and a cAMP-independent process. To determine whether both mechanisms involve the guanyl nucleotide-binding protein Ni, we used pertussis toxin, which ADP-ribosylates Ni and thereby blocks its function. Pertussis toxin treatment of GH4C1 cells blocked somatostatin inhibition of both vasoactive intestinal peptide (VIP)-stimulated cAMP accumulation and prolactin secretion. In membranes prepared from toxin-treated cells, somatostatin inhibition of VIP-stimulated adenylate cyclase activity was reduced and 125I-Tyr1-somatostatin binding was decreased more than 95%. In contrast, pertussis toxin did not affect the biological actions or the membrane binding of thyrotropin-releasing hormone. These results indicate that ADP-ribosylated Ni cannot interact with occupied somatostatin receptors and that somatostatin inhibits VIP-stimulated adenylate cyclase via Ni. To investigate somatostatin's cAMP-independent mechanism, we used depolarizing concentrations of K+ to stimulate prolactin release without altering intracellular cAMP levels. Measurement of Quin-2 fluorescence showed that 11 mM K+ increased intracellular [Ca2+] within 5 s. Somatostatin caused an immediate, but transient, decrease in both basal and K+-elevated [Ca2+]. Consistent with these findings, somatostatin inhibited K+-stimulated prolactin release, also without affecting intracellular cAMP concentrations. Pertussis toxin blocked the somatostatin-induced reduction of [Ca2+]. Furthermore, the toxin antagonized somatostatin inhibition of K+-stimulated and VIP-stimulated secretion with the same potency (ED50 = 0.3 ng/ml). These results indicate that pertussis toxin acts at a common site to prevent somatostatin inhibition of both Ca2+- and cAMP-stimulated hormone release. Thus, Ni appears to be required for somatostatin to decrease both cAMP production and [Ca2+] and to inhibit the actions of secretagogues using either of these intracellular messengers.  相似文献   

2.
The neuropeptide somatostatin causes membrane hyperpolarization and reduces the intracellular free calcium ion concentration ([Ca2+]i) in GH pituitary cells. In this study, we have used the fluorescent dyes bisoxonol (bis,-(1,3-diethylthiobarbiturate)-trimethineoxonol) and quin2 to elucidate the mechanisms by which these ionic effects are triggered. Addition of 100 nM somatostatin to GH4C1 cells caused a 3.4 mV hyperpolarization and a 26% decrease in [Ca2+]i within 30 s. These effects were not accompanied by changes in intracellular cAMP concentrations and occurred in cells containing either basal or maximally elevated cAMP levels. To determine which of the major permeant ions were involved in these actions of somatostatin, we examined its ability to elicit changes in the membrane potential and the [Ca2+]i when the transmembrane concentration gradients for Na+, Cl-, Ca2+, and K+ were individually altered. Substitution of impermeant organic ions for Na+ or Cl- did not block either the hyperpolarization or the decrease in [Ca2+]i induced by somatostatin. Decreasing extracellular Ca2+ from 1 mM to 250 nM abolished the reduction in [Ca2+]i but did not prevent the hyperpolarization response. These results show that hyperpolarization was not primarily due to changes in the conductances of Na+, Cl-, or Ca2+. Although the somatostatin-induced decrease in [Ca2+]i did require Ca2+ influx, it was independent of changes in Na+ or Cl- conductance. In contrast, elevating the extracellular [K+] from 4.6 to 50 mM completely blocked both the somatostatin-induced hyperpolarization and the reduction in [Ca2+]i. Furthermore, hyperpolarization of the cells with gramicidin mimicked the effect of somatostatin to decrease the [Ca2+]i and prevented any additional effect by the hormone. These results indicate that somatostatin increases a K+ conductance, which hyperpolarizes GH4C1 cells, and thereby secondarily decreases Ca2+ influx. Since the somatostatin-induced decrease in [Ca2+]i is independent of changes in intracellular cAMP levels, it may be responsible for somatostatin inhibition of hormone secretion by its cAMP-independent mechanism.  相似文献   

3.
Changes in the cytosolic free Ca2+ concentration, [Ca2+]i, have been proposed to mediate the regulation of the secretion of pituitary hormones by hypothalamic peptides. Using an intracellularly trapped fluorescent Ca2+ probe, quin2, [Ca2+]i was monitored in GH3 cells. Somatostatin lowers [Ca2+]i in a dose dependent manner from a prestimulatory level of 120 +/- 4 nM (SEM, n = 13) to 78 +/- 9 nM (n = 5) at 10(-7)M; the effect is half maximal at 2 X 10(-9) M somatostatin. The decrease in [Ca2+]i occurs rapidly after somatostatin addition and a lowered steady state [Ca2+]i is maintained for several minutes. Somatostatin does not inhibit the rapid rise in [Ca2+]i elicited by thyrotropin releasing hormone (TRH) and can still cause a decrease in [Ca2+]i in the presence of TRH (10(-7)M). Concomitantly with its action on [Ca2+]i somatostatin causes hyperpolarization of GH3 cells assessed with the fluorescent probe bis-oxonol. The lowering of [Ca2+]i by somatostatin is however not only due to reduced Ca2+ influx through voltage dependent Ca2+ channels, since it persists in the presence of the channel blocker verapamil. These results suggest that somatostatin may exert its inhibitory action on pituitary hormone secretion by decreasing [Ca2+]i.  相似文献   

4.
The effects of galanin and somatostatin on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration [( Ca2+]i) were investigated using beta-cells isolated from obese hyperglycemic mice. Whereas insulin release was measured in a column perifusion system, membrane potential and [Ca2+]i were measured with the fluorescent indicators bisoxonol (bis-(1,3-diethylthiobarbiturate)trimethineoxonol) and quin 2, in cell suspensions in a cuvette. Galanin (16 nM) and somatostatin (400 nM) suppressed glucose-stimulated insulin release in parallel to promoting repolarization and a reduction in [Ca2+]i. The reduction in [Ca2+]i comprised an initial nadir followed by a slow rise and the establishment of a new steady state level. The slow rise in [Ca2+]i was abolished by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. Both peptides suppressed insulin release even when [Ca2+]i was raised by 25 mM K+. Under these conditions the inhibition of insulin release was partly reversed by an increase in the glucose concentration. Addition of 5 mM Ca2+ to a cell suspension, incubated in the presence of 20 mM glucose and either galanin, somatostatin, or the alpha 2-adrenergic agonist clonidine (10 nM), induced oscillations in [Ca2+]i, this effect disappearing subsequent to the addition of D-600. The effects of galanin, somatostatin, and clonidine on [Ca2+]i were abolished in beta-cells treated with pertussis toxin. In accordance with measurements of [Ca2+]i, treatment with pertussis toxin reversed the inhibitory effect of galanin on insulin release. The inhibitory action of galanin and somatostatin on insulin release is probably accounted for by not only a repolarization-induced reduction in [Ca2+]i and a decreased sensitivity of the secretory machinery to Ca2+, but also by a direct interaction with the exocytotic process. It is proposed that these effects are mediated by a pertussis toxin-sensitive GTP-binding protein.  相似文献   

5.
Platelet-activating factor (PAF) is a naturally occurring pleiotropic mediator which acts via specific membrane receptors. In certain target cells, PAF causes elevations in cytosolic free Ca2+ concentration ([Ca2+]i); however, little is known of the effects of PAF on endocrine cells. Therefore, we have investigated the actions of PAF on [Ca2+]i in prolactin-secreting GH4C1 cells and have compared the effects with the well documented actions on these cells of thyrotropin-releasing hormone (TRH). GH4C1 cells were loaded with quin2/AM and fluorescence was measured in suspended populations. PAF induced a dose-dependent (10-100 microM) rise in [Ca2+]i which was slower in onset than that caused by TRH, peaking (200 to 400% above basal [Ca2+]i) at about 12 sec, and decaying over about 3 min to basal [Ca2+]i. Unlike TRH, PAF did not cause a secondary plateau phase of rise in [Ca2+]i. The terpene PAF receptor antagonist BN52021 inhibited the action of PAF on [Ca2+]i. Voltage-dependent Ca2+ channel blocker, verapamil (200 microM), antagonized the action of PAF on [Ca2+]i as did chelation of extracellular Ca2+. PAF also stimulated the secretion of prolactin in a dose-dependent manner (10 to 50 microM). The concentrations of PAF required to evoke responses in GH4C1 cells were considerably higher than those required in several other known PAF target cell types. The high concentration requirement in GH4C1 cells may be due to rapid degradation of PAF or the presence of low affinity receptors. We conclude that PAF can act, via cell surface receptors, on pituitary GH4C1 cells to alter [Ca2+]i by a pathway that enhances influx of extracellular Ca2+ through voltage-gated channels and then to enhance the secretion of prolactin.  相似文献   

6.
Depolarizing K+ and medium hyposmolarity caused striking rises in both cytosolic free Ca2+ concentration [( Ca2+]i) and prolactin (PRL) secretion in GH4C1 cells, which were completely blocked by removal of medium Ca2+. However, the increase in [Ca2+]i and PRL secretion induced by hyposmolarity was clearly slower than that induced by K+. Although there was a good correlation between the zenith of PRL secretion and [Ca2+]i induced by various intensities of K+ or hyposmolarity, the regression slopes were significantly different between the K(+)-and hyposmolarity-induced changes (P less than 0.01). There was a good correlation between the maximum rate of change in PRL secretion and that of the increase in [Ca2+]i when the data from the 2 secretagogues were combined (r = 0.994, P less than 0.001, N = 9). We suggest that the rate of increase in [Ca2+]i may be more important than the amplitude of [Ca2+]i in stimulating PRL secretion.  相似文献   

7.
The free intracellular calcium ion concentration ([Ca2+]i) was measured in single cells of a population containing 65-80% somatotrophs, using the fluorescent Ca(2+)-indicator Fura-2 and digital imaging microscopy. Spontaneous oscillations in [Ca2+]i ranging in frequency up to 1.5 oscillations per minute were observed in 30% of somatotrophs. These Ca2+ oscillations were blocked by the Ca2+ channel blocker CoCl2 and were thus proposed to be the result of influx of Ca2+ into the cell, possibly as the result of spontaneous electrical activity. GHRH (10-100 nM) increased [Ca2+]i in 61% of the cells studied, although the amplitude and dynamics of the response varied from cell to cell. Typically [Ca2+]i rose from 170 +/- 26 nM to 321 +/- 44 nM (n = 13) in response to a challenge with 66 nM GHRH. GHRH also increased the frequency of Ca2+ oscillations in a number of cells, and some previously quiescent cells showed Ca2+ oscillations following addition of GHRH. Forskolin, which raises cAMP levels in bovine anterior pituitary cells, also stimulated a sustained rise in [Ca2+]i in 10 out of 14 cells tested. Somatostatin (SS) (10-80 nM) rapidly reduced basal [Ca2+]i, blocked Ca2+ oscillations, and blocked the [Ca2+]i response to GHRH. The Ca2+ channel blocker CoCl2 (4 mM) had similar actions on [Ca2+]i to those of SS. These results suggest that GHRH and SS may regulate GH release by modulating Ca2+ entry into the cell through the cell membrane. The [Ca2+]i oscillations seen in a proportion of the somatotrophs were modulated in frequency by GHRH and SS, and are probably generated by influx of Ca2+ through channels in the cell membrane. Thus GH secretion may be regulated by changes in the mean level of [Ca2+]i, which in turn, may be influenced by the frequency of [Ca2+]i oscillations in bovine somatotrophs.  相似文献   

8.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

9.
Thyrotropin-releasing hormone stimulation of prolactin secretion from rat pituitary (GH3) cells is biphasic with a secretory burst (0-2 min) at a higher rate, followed by sustained secretion (beyond 2 min) at a lower rate. Based on the effects of calcium ionophores, K+ depolarization, and diacylglycerol (or phorbol esters), it was suggested that the secretory burst is dependent on elevation of cytoplasmic free calcium concentration [( Ca2+]i) whereas sustained secretion is mediated by lipid-activated protein phosphorylation. In this study, we pretreated GH3 cells with 0.03 mM arachidonic acid to abolish thyrotropin-releasing hormone-induced elevation of [Ca2+]i (Kolesnick, R. N., and Gershengorn, M. C. (1985) J. Biol. Chem. 260, 707-713). In control cells, basal secretion was 0.7 +/- 0.2 ng/10(6) cells/min which increased to 8.3 +/- 0.8 between 0 and 2 min after TRH and remained elevated at 3.3 +/- 0.2 between 2-10 min. In cells pretreated with arachidonic acid, TRH stimulated prolactin secretion to only 2.6 +/- 0.3 ng/10(6) cells/min between 0 and 2 min and to 3.2 +/- 0.2 between 2 to 10 min; these values are not different from each other nor from the response between 2 and 10 min in control cells. K+ depolarization, which elevates [Ca2+]i even in arachidonic acid-pretreated cells but does not affect lipid metabolism, caused only a secretory burst. Bovine serum albumin, which binds free arachidonic acid and reverses arachidonic acid inhibition of TRH-induced elevation of [Ca2+]i, reversed the inhibition of the secretory burst stimulated by TRH. These studies present direct evidence that the burst of prolactin secretion stimulated by TRH is dependent on an elevation of [Ca2+]i whereas the sustained phase of secretion is independent of such elevation.  相似文献   

10.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

11.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

12.
G R Hart  K P Ray  M Wallis 《FEBS letters》1986,203(1):77-81
Intracellular free Ca2+ concentrations [Ca2+]i were measured in ovine anterior pituitary cells using the quin 2 technique. Thyrotropin-releasing hormone (TRH) increased, dopamine decreased and growth hormone-releasing hormone (GHRH) had no detectable effect on [Ca2+]i. Loading the cells with quin 2, at an intracellular concentration less than that used during calcium determination, reduced both basal growth hormone (GH) and (to a small extent) prolactin secretion. Loading cells with quin 2 also markedly reduced GHRH-stimulated GH secretion. However, TRH-stimulated prolactin secretion was 3-times basal irrespective of quin 2 loading. The results indicate that the use of quin 2 to measure [Ca2+]i in some cell types may be complicated by actions of quin 2 on cellular function.  相似文献   

13.
Using the acetoxymethyl ester of "Quin 2," a fluorescent Ca2+-indicator, we have loaded prolactin (PRL)-producing rat pituitary cells with non-toxic concentrations of Quin 2 and quantitated changes in cytosolic free calcium concentration ( [Ca2+]i) during stimulation of PRL release by thyrotropin-releasing hormone (TRH) and 40 mM K+. TRH induced a biphasic response, with an immediate (less than 1 s) spike in [Ca2+]i from basal levels (350 +/- 80 nM) to a peak of 1-3 microM, which decayed rapidly (t 1/2 = 8 s) to a near basal nadir, then rising to a plateau in [Ca2+]i of 500-800 nM. The TRH-induced spike phase was attenuated but not abolished by prior addition of EGTA, while the plateau phase was eliminated by EGTA. Addition of 40 mM K+ caused an immediate spike in [Ca2+]i to 1-3 microM which equilibrated slowly (t 1/2 = 1 min) directly to a plateau of 600-800 nM. The K+-induced spike and plateau phases were both abolished by prior addition of EGTA. The biphasic nature of TRH action on [Ca2+]i parallels the biphasic actions of TRH on 45Ca2+ fluxes and the biphasic release of PRL by GH cells in suspension. These findings provide evidence that Ca2+-dependent agonist-mediated increases in [Ca2+]i and hormone release are linked, and may generally have two modes: an acute "spike" mode, dependent primarily on redistribution of intracellular Ca2+ stores; and a sustained "plateau" mode, dependent on influx of extracellular Ca2+.  相似文献   

14.
The role of cAMP in the control of secretion from bovine adrenal chromaffin cells was examined using the adenylate cyclase activator, forskolin. Treatment of chromaffin cells with forskolin resulted in a rise in cAMP levels. Forskolin inhibited catecholamine release elicited by carbamylcholine or nicotine but had no effect on secretion evoked by 55 mM K+. Inhibition of carbamylcholine-stimulated release by forskolin was half-maximal at 10 microM forskolin. The inhibition by forskolin of secretion evoked by carbamylcholine was at a step distal to the rise in intracellular free calcium concentration ([Ca2+]i), since this rise was not inhibited by forskolin, which itself produced a small rise in [Ca2+]i. The results suggest that secretion evoked by carbamylcholine is due to the activation of an additional second messenger pathway acting with the rise in [Ca2+]i. This additional pathway may be the target for cAMP action.  相似文献   

15.
The role of extracellular Ca2+ in pituitary hormone release was studied in primary cultures of rat anterior pituitary cells. The basal levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH), and adrenocorticotropin (ACTH) secretion were independent of extracellular Ca2+ concentration ([Ca2+]e). In contrast, the basal levels of growth hormone (GH) and prolactin (PRL) release showed dose-dependent increases with elevation of [Ca2+]e, and were abolished by Ca2+-channel antagonists. Under Ca2+-deficient conditions, BaCl2 mimicked the effects of calcium on PRL and GH release but with a marked increase in potency, and also increased basal LH and FSH release in a dose-dependent manner. In the presence of normal [Ca2+]e, depolarization with K+ maximally increased cytosolic [Ca2+] ([Ca2+]i) from 100 to 185 nM and elevated LH, FSH, TSH, ACTH, PRL, and GH release by 7-, 5-, 4-, 3-, 2-, and 1.5-fold, respectively. These effects of KCl were abolished in Ca2+-deficient medium or in the presence of the Ca2+-channel antagonist, Co2+, and were diminished by the dihydropyridine Ca2+-channel antagonist, nifedipine. The Ca2+-channel agonist BK 8644 (100 nM) enhanced the hormone-releasing actions of 25 mM KCl upon PRL, LH, FSH, GH, TSH, and ACTH by 2.3-, 2.0-, 1.8-, 1.7-, 1.6-, and 1.4-fold, respectively. The dose- and voltage-dependent actions of BK 8644 were specific for individual cell types; BK 8644 enhanced GH, PRL, TSH, LH, and ACTH secretion in the absence of any depolarizing stimulus, with ED50 values of 8, 10, 150, 200, and 400 nM, respectively. However, in the presence of 50 mM KCl, the ED50 values for BK 8644 were 1.5, 2, 3, 5, and 7 nM for GH, PRL, ACTH, TSH, and LH, respectively. [3H]BK 8644 bound specifically to pituitary membranes with Kd values of 0.8 nM and concentrations of about 900 channels per cell. These observations provide evidence for the presence and participation of voltage-sensitive calcium channels in the secretion of all five populations of anterior pituitary cells.  相似文献   

16.
The chemoattractant cAMP elicits a transient efflux of K+ in cell suspensions of Dictyostelium discoideum. This cellular response displayed half-maximal activity at about 1 microM cAMP and saturated at 100 microM cAMP, cAMP-stimulated K+ efflux, measured with a K+-sensitive electrode, depended on the extracellular free Ca2+ concentration ([Ca2+]0) and was maximal in the presence of EGTA. Usually more than 90% of the K+ release could be inhibited by the addition of Ca2+. Half-maximal reduction occurred at about 2 microM [Ca2+]0. Inhibition was also observed in the presence of caffeine or A23187, drugs known to elevate the intracellular free Ca2+ concentration ([Ca2+]i). Under conditions where [Ca2+]0 was maintained at a low level, half-maximal inhibition was 1 mM for caffeine and 3 microM for A23187. These results indicate that Cai2+ is involved in the regulation of K+ efflux. Simultaneous measurements of Ca2+ uptake and K+ efflux induced by cAMP as well as free running oscillations of both ions revealed that initiation and termination of Ca2+ uptake slightly preceded those of K+ efflux.  相似文献   

17.
Depolarization of membrane potential by high external K+ activates Ca2+ influx via voltage-dependent Ca2+ channels in GH4C1 cells (Tan, K.-N., and Tashjian, A. H., Jr. (1983) J. Biol. Chem. 258, 418-426). The involvement of this channel in thyrotropin-releasing hormone (TRH) action on prolactin (PRL) release was assessed by comparing the pharmacological characteristics of TRH-induced PRL release with PRL release due to high K+. Two components of TRH-stimulated PRL release were detected. The major component (approximately equal to 75%) was dependent on external Ca2+ concentration and was inhibited by voltage-dependent Ca2+ channel blockers in a manner quantitatively similar to high K+-stimulated PRL release. The minor component (approximately equal to 25%) of TRH-stimulated PRL release was insensitive to voltage-dependent Ca2+ channel blockers and could occur in the presence of low external Ca2+ (10(-5)-10(-7) M). Neither voltage-dependent Ca2+ channel blockers nor depletion of medium Ca2+ prevented the action of TRH on mobilizing cell-associated 45Ca2+ from GH4C1 cells. Divalent cations that permeate voltage-dependent Ca2+ channels (Sr2+ and Ba2+) substituted for Ca2+ in supporting high K+- and TRH-stimulated PRL release while Mg2+, a nonpermeant cation, did not. We conclude that TRH stimulates PRL release by increasing [Ca2+]i through at least two mechanisms: one requires only low [Ca2+]o, the second involves Ca2+ influx via voltage-dependent Ca2+ channels. This latter mechanism accounts for approximately equal to 75% of maximum TRH-induced PRL release.  相似文献   

18.
The putative role of voltage-dependent Na+ channels for glucose induction of rhythmic Ca2+ signalling was studied in mouse pancreatic beta-cells with the use of the Ca2+ indicator fura-2. A rise in glucose from 3 to 11 mM resulted in slow oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i). These oscillations, as well as superimposed transients seen during forskolin-induced elevation of cAMP, remained unaffected in the presence of the Na+ channel blocker tetrodotoxin. During exposure to 1-10 microM veratridine, which facilitates the opening of voltage-dependent Na+ channels, the slow oscillations were replaced by repetitive and pronounced [Ca2+]i transients arising from the basal level. The effects of veratridine were reversed by tetrodotoxin. The veratridine-induced [Ca2+]i transients were critically dependent on the influx of Ca2+ and persisted after thapsigargin inhibition of the endoplasmic reticulum Ca2+-ATPase. Both tolbutamide and ketoisocaproate mimicked the action of glucose in promoting [Ca2+]i transients in the presence of veratridine. It is suggested that activation of voltage-dependent Na+ channels is a useful approach for amplifying Ca2+ signals for insulin release.  相似文献   

19.
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells.  相似文献   

20.
In clonal rat pituitary cells (GH cells), thyrotropin-releasing hormone (TRH) induced a pattern of changes in cytosolic free calcium concentrations [( Ca2+]i) composed of two phases: an acute spike phase to micromolar levels which decayed (t1/2 = 8 s) to a near-basal concentration and then rose to a prolonged plateau phase of elevated [Ca2+]i (as measured using Quin 2). Closely following these changes in [Ca2+]i, TRH stimulated a rapid "spike phase" of pronounced, but brief, enhancement of the rate of prolactin and growth-hormone secretion and then a "plateau phase" of prolonged enhancement. These two phases were dissociated using two classes of pharmacologic agents: the ionophore ionomycin, and a calcium channel antagonist nifedipine. Ionomycin (100 nM) specifically blocked (less than 90%) the spike phase of TRH action by rapidly emptying the TRH-regulated reservoir of cellular Ca2+ to generate a TRH-like spike in [Ca2+]i; nifedipine inhibited (less than 50%) the plateau phase of TRH-induced changes in [Ca2+]i and hormone secretion by preventing Ca2+ influx through voltage-dependent Ca2+ channels. These agents demonstrated that the TRH-induced spike in [Ca2+]i in GH cells is caused by release of an ionomycin-sensitive pool of cellular Ca2+ with a small component (10%) due to influx of extracellular Ca2+. The TRH-induced plateau in [Ca2+]i is due to influx of extracellular Ca2+, about half of which enters through voltage-dependent calcium channels and half of which enters via nifedipine/verapamil-insensitive influx. The TRH-induced spike in [Ca2+]i led to a burst in hormone secretion, and the plateau in [Ca2+]i produced a prolonged enhancement of secretion; the spike and plateau phases were generated independently by TRH. A spike in [Ca2+]i is necessary, but not sufficient, to induce burst release of hormone, while the prolonged rate of hormone secretion is intimately related to the steady-state [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号