首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
4.
Genetics of the iron dicitrate transport system of Escherichia coli.   总被引:43,自引:23,他引:20       下载免费PDF全文
Escherichia coli B and K-12 express a citrate-dependent iron(III) transport system for which three structural genes and their arrangement and products have been determined. The fecA gene of E. coli B consists of 2,322 nucleotides and encodes a polypeptide containing a signal sequence of 33 amino acids. The cleavage site was determined by amino acid sequence analysis of the unprocessed protein and the mature protein. For the processed form a length of 741 amino acids was calculated. The mature FecA protein in the outer membrane contains at the N terminus the "TonB box," a pentapeptide, which has hitherto been found in all receptors and colicins which functionally require the TonB protein. In addition, the dyad repeat sequence GAAAATAATTCTTATTTCG is proposed to serve as the binding site of the Fur iron repressor protein. The fecB gene was mapped downstream of fecA and encodes a protein with an apparent molecular weight of 30,000. It was synthesized as a precursor, and the mature form was found in the periplasm. The fecD gene follows fecB and was related to a membrane-bound protein with an apparent molecular weight of 28,000. In Mu d1 insertion mutants upstream of fecA, the fec genes were not inducible by iron limitation and citrate, indicating a regulatory region, termed fecI, which controls fec gene expression.  相似文献   

5.
6.
7.
Streptonigrin was used to select mutants impaired in the citrate-dependent iron transport system of Escherichia coli K-12. Mutants in fecA and fecB could not transport iron via citrate. fecA-lac and fecB-lac operon fusions were constructed with the aid of phage Mu dl(Ap lac). Strains deficient in ferric dicitrate transport which were mutated in fecB were as inducible as transport-active strains. They expressed the FecA outer membrane protein and beta-galactosidase of the fecB-lac operon fusions. In contrast, all fecA::lac mutants and fecA mutants induced with N-methyl-N'-nitro-N-nitrosoguanidine did not respond to ferric dicitrate supplied in the growth medium. tonB fecB mutants which were lacking all tonB-related functions were not inducible. We conclude that binding of iron in the presence of citrate to the outer membrane receptor protein is required for induction of the transport system. In addition, the tonB gene has to be active. However, iron and citrate must not be transported into the cytoplasm for the induction process. These data support our previous conclusion of an exogenous induction mechanism. Mutants in fur expressed the transport system nearly constitutively. In wild-type cells limiting the iron concentration in the medium enhanced the expression of the transport system. Thus, the citrate-dependent iron transport system shares regulatory devices with the other iron transport systems in E. coli and, in addition, requires ferric dicitrate for induction.  相似文献   

8.
9.
10.
11.
The fec region of the Escherichia coli chromosome determines a citrate-dependent iron(III) transport system. The nucleotide sequence of fec revealed five genes, fecABCDE, which are transcribed from fecA to fecE. The fecA gene encodes a previously described outer membrane receptor protein. The fecB gene product is formed as a precursor protein with a signal peptide of 21 amino acids; the mature form, with a molecular weight of 30,815, was previously found in the periplasm. The fecB genes of E. coli B and E. coli K-12 differed in 3 nucleotides, of which 2 gave rise to conservative amino acid exchanges. The fecC and fecD genes were found to encode very hydrophobic polypeptides with molecular weights of 35,367 and 34,148, respectively, both of which are localized in the cytoplasmic membrane. The fecE product was a rather hydrophilic but cytoplasmic membrane-bound protein of Mr 28,189 and contained regions of extensive homology to ATP-binding proteins. The number, structural characteristics, and locations of the FecBCDE proteins were typical for a periplasmic-binding-protein-dependent transport system. It is proposed that after FecA- and TonB-dependent transport of iron(III) dicitrate across the outer membrane, uptake through the cytoplasmic membrane follows the binding-protein-dependent transport mechanism. FecC and FecD exhibited homologies to each other, to the N- and C-terminal halves of FhuB of the iron(III) hydroxamate transport system, and to BtuC of the vitamin B12 transport system. FecB showed some homology to FhuD, suggesting that the latter may function in the same manner as a binding protein in iron(III) hydroxamate transport. The close homology between the proteins of the two iron transport systems and of the vitamin B12 transport system indicates a common evolution for all three systems.  相似文献   

12.
Mutants of Escherichia coli K-12 AB2847 and of E. coli K-12 AN92 were isolated which were unable to grow on ferric citrate as the sole iron source. Of 22 mutants, 6 lacked an outer membrane protein, designated FecA protein, which was expressed by growing cells in the presence of 1 mM citrate. Outer membranes showed an enhanced binding of radioactive iron, supplied as a citrate complex, depending on the amount of FecA protein. The FecA protein was the most resistant of the proteins involved in ferric irion iron translocation across the outer membrane (FhuA = TonA, FepA, Cir, or 83K proteins) to the action of pronase P. It is also shown that previously isolated fec mutants (G. C. Woodrow et al., J. Bacteriol. 133:1524-1526, 1978) which are cotransducible with argF all lack the FecA protein. They were termed fecA to distinguish them from the other ferric citrate transport mutants, now designated fecB, which mapped in the same gene region at 7 min but were not cotransducible with ArgF. E. coli W83-24 and Salmonella typhimurium, which are devoid of a citrate-dependent iron transport system, lacked the FecA protein. It is proposed that the FecA protein participates in the transport of ferric citrate.  相似文献   

13.
Citrate-dependent iron transport system in Escherichia coli K-12   总被引:20,自引:0,他引:20  
Induction of the citrate-dependent iron transport system of Escherichia coli K-12 required 0.1 mM citrate and 0.1 micrometer iron in the growth medium. Five--ten-times more iron than citrate was taken up into the cells which suggests that citrate was largely excluded from the transport. Fluorocitrate and phosphocitrate induced the citrate-dependent iron transport system although they supported iron uptake only very poorly. An outer membrane protein (FecA), belonging to the transport system, was induced in fecB mutants which were devoid of citrate-dependent iron transport. The intracellular citrate and iron concentrations were 10--100-times higher than the external concentrations required for induction of the transport system. It is concluded that only exogenous ferric citrate induced the transport system, and that citrate did not have to enter the cytoplasm. The Tn10 transposon, conferring tetracycline resistance, was inserted near the fec gene region which controls the expression of the citrate-dependent iron transport system. The determination of the cotransduction frequencies of Tn10 with the fecA and fecB markers suggested the gene order fecA fecB Tn10.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号