首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log(10) cells/g feces was approximately 50%. The quantification limit was 5 to 6 log(10) groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR.  相似文献   

2.
In this study, a competitive PCR was developed to estimate the quantity of bifidobacteria in human faecal samples using two 16S rRNA gene Bifidobacterium genus-specific primers, Bif164f and Bif662r. A PCR-temporal temperature gradient gel electrophoresis (TTGE) with the same primers also allowed us to describe the Bifidobacterium species present in these faecal samples. The PCR product obtained from the competitor had 467 bp, and was 47 bp shorter than the PCR products obtained from Bifidobacterium strains. The number of bifidobacterial cells was linear from 10 to 10(8) cells per PCR assay. Taking into account the dilutions of the extracted DNA, the linear range was over 8 x 10(5) bifidobacteria g(-1) of faeces. Reproducibility was assessed from 10 independent DNA extractions from the same stool and the coefficient of variation was 0.5%. When the competitive PCR was compared with the culture method, a similar count of seven out of nine Bifidobacterium pure cultures were obtained, or had a difference inferior or equal to 1 log(10). In faecal samples, the enumeration of Bifidobacterium genus in most cases gave higher results with competitive PCR than with culture on selective Columbia-Beerens agar pH 5 (P < 0.05). In conclusion, this competitive PCR allows a rapid, highly specific and reproducible quantification of Bifidobacterium genus in faecal samples. TTGE fragments co-migrating with B. longum CIP64.63 fragment were found in 10 out of 11 faecal samples. Bifidobacterium adolescentis and B. bifidum were detected in five out of 11 subjects. Thus, cPCR and PCR-TTGE can be associated in order to characterize human faecal bifidobacteria.  相似文献   

3.
AIMS: The microbiota of the human intestinal tract constitutes a complex ecosystem. We report the design and optimization of an extensive set of 16S rDNA-targeted species- and group-specific primers for more accurate quantification of bacteria from faecal samples with real-time PCR. METHODS AND RESULTS: A linear range of quantification between 0.1-10 pg and 10 ng of specific target genome was obtained, which corresponds to detection of ca 30-4500 to 1.9 x 10(6)-6.0 x 10(6) target bacterial genomes. Functionality of the assays was confirmed by quantification of target bacterial DNA from faecal DNA preparations of healthy volunteers and irritable bowel syndrome (IBS) patients. Additionally, spiking of faecal preparations with Helicobacter pylori, Clostridium difficile or Campylobacter jejuni was used to confirm the accurate and sensitive quantification. CONCLUSIONS: Real-time PCR is a very sensitive and precise technique for an extensive quantitative evaluation of gut microbiota and is feasible for detection of human pathogens from faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: To design and optimize an extensive set of real-time PCR assays targeting a large group of predominant and pathogenic GI microbial species for further use in updating the current knowledge of the putative role of gut microbiota in health and disease.  相似文献   

4.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113-121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

5.
AIMS: A real-time PCR-based method was developed to evaluate the Bifidobacterium rRNA operon copy number. As a result of their repetitive nature, rRNA operons are very suitable targets for chromosomal integration of heterologous genes. METHODS AND RESULTS: The rrn operon multiplicity per chromosome was determined by real-time PCR quantification of the 16S rRNA amplicons obtained from genomic DNA. The values obtained in several bifidobacterial strains of human origin ranged from 1 to 5. The reliability of the method developed was confirmed by Southern hybridization technique. CONCLUSIONS: In the Bifidobacterium genus the rrn operon copies showed variability at species and strain level. The identification of Bifidobacterium strains with high rRNA multiplicity allowed the selection of potential hosts for chromosomal integration. SIGNIFICANCE AND IMPACT OF THE STUDY: The methodology here proposed represents a rapid, reliable and sensitive new tool for the quantification of rrn operon copy number in bacteria.  相似文献   

6.
16SrDNA-targeted genus- and species-specific PCR primers have been developed and used for the identification and detection of bifidobacteria. These primers cover all of the described species that inhabit the human gut, or occur in dairy products. Identification of cultured bifidobacteria using PCR primer pairs is rapid and accurate, being based on nucleic acid sequences. Detection of bifidobacteria can be achieved using DNA extracted from human faeces as template in PCR reactions. We have found that, in adult faeces, the Bifidobacterium catenulatum group was the most commonly detected species, followed by Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum. In breastfed infants, Bifidobacterium breve was the most frequently detected species, followed by Bifidobacterium infantis, B. longum and B. bifidum. It was notable that the B. catenulatum group was detected with the highest frequency in adults, although it has often been reported that B. adolescentis is the most common species. Real-time, quantitative PCR using primers targeting 16S rDNA shows promise in the enumeration of bifidobacteria in faecal samples. The approach to detect the target bacteria with quantitative PCR described in this review will contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

7.
A highly sensitive quantitative PCR detection method has been developed and applied to the distribution analysis of human intestinal bifidobacteria by combining real-time PCR with Bifidobacterium genus- and species-specific primers. Real-time PCR detection of serially diluted DNA extracted from cultured bifidobacteria was linear for cell counts ranging from 10(6) to 10 cells per PCR assay. It was also found that the method was applicable to the detection of Bifidobacterium in feces when it was present at concentrations of >10(6) cells per g of feces. Concerning the distribution of Bifidobacterium species in intestinal flora, the Bifidobacterium adolescentis group, the Bifidobacterium catenulatum group, and Bifidobacterium longum were found to be the three predominant species by examination of DNA extracted from the feces of 46 healthy adults. We also examined changes in the population and composition of Bifidobacterium species in human intestinal flora of six healthy adults over an 8-month period. The results showed that the composition of bifidobacterial flora was basically stable throughout the test period.  相似文献   

8.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

9.
Faecal and serum samples were collected over a period of 6 months from 55 institutionalized elderly subjects, who were enrolled in a double-blind placebo-controlled study. Participants were randomized in one of the three treatment groups: intervention (two probiotic Bifidobacterium longum strains: 2C and 46), placebo and commercial control (Bifidobacterium lactis Bb-12). The faecal Bifidobacterium microbiota was characterized by genus and species-specific PCR. Serum levels of the cytokines IL-10, tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta1 were determined by enzyme-linked immunosorbent assay. Each participant harboured on average approximately three different bifidobacterial species. The most frequently detected species were B. longum, Bifidobacterium adolescentis and Bifidobacterium bifidum. Depending on the treatment, the intervention resulted in specific changes in the levels of certain Bifidobacterium species, and positive correlations were found between the different species. Negative correlations were observed between the levels of Bifidobacterium species and the pro-inflammatory cytokine TNF-alpha and the regulatory cytokine IL-10. The presence of faecal B. longum and Bifidobacterium animalis correlated with reduced serum IL-10. The anti-inflammatory TGF-beta1 levels were increased over time in all three groups, and the presence of Bifidobacterium breve correlated with higher serum TGF-beta1 levels. This indicates that modulation of the faecal Bifidobacterium microbiota may provide a means of influencing inflammatory responses.  相似文献   

10.
A PCR-ELISA method was extended for detection of most common Bifidobacterium species in humans and applied to a feeding trial including administration of Bifidobacterium lactis Bb-12 and galacto-oligosaccharide (GOS)-containing syrup as probiotic and prebiotic preparations, respectively. For PCR-ELISA, oligonucleotide probes based on 16S rDNA sequences were designed and tested for specificity and sensitivity with nine different bifidobacterial species followed by analysis of faecal samples. Bifidobacteria were monitored for their fluctuations during and after the feeding trial. Bifidobacterium longum was the most common species found in the faecal samples, followed by B. adolescentis and B. bifidum. During ingestion of the probiotic B. lactis Bb-12, the strain appeared in the faeces but was absent again one week after finishing of the trial. The species that were observed in the faecal samples taken prior to the feeding experiments persisted also in samples derived from the pre-feeding and feeding periods. The most consistent change observed was the decrease in the relative amount of B. longum in the test group ingesting either B. lactis Bb-12 alone or in combination with GOS-syrup. Since the amounts of B. longum increased again in the post-feeding sample with these subjects, it may suggest that to some extent B. lactis Bb-12 is able to transiently replace B. longum.  相似文献   

11.
Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to characterize and compare human fecal microbiota among individuals. T-RFLP patterns of fecal 16S ribosomal DNA (rDNA) PCR products from three adults revealed host-specific bacterial communities and were in good agreement with those reported in our previous study. In addition, we applied T-RFLP analysis for the analysis of complex bifidobacterial communities in human fecal samples. The developed method based on Bifidobacterium genus-specific PCR and T-RFLP could identify more than one bifidobacterial species. T-RFLP patterns of Bifidobacterium genus-specific PCR products from the fecal samples were host-specific as well as those of fecal 16S rDNA PCR products. These results were confirmed by PCR-denaturing gradient gel electrophoresis (DGGE) with primers specific for the genus Bifidobacterium and Bifidobacterium species- and group-specific PCR. Our study demonstrates that T-RFLP analysis is useful for assessment of the diversity of the human fecal microbiota and rapid comparison of the community structure among individuals, and that the applied method is useful for rapid and sensitive analysis of bifidobacterial community.  相似文献   

12.
Strain-specific rRNA-targeted primers were designed for the quantitative detection of Bifidobacterium infantis Y1, B. breve Y8 and B. longum Y10 used in a pharmaceutical probiotic product (VSL-3). PCR and real-time PCR techniques with the selected primers were employed for the direct enumeration of the bifidobacteria in the probiotic preparation and for studying their kinetic characteristics in batch cultures. These analysis revealed that B. infantis Y1 was the predominant strain in the probiotic product and that its growth rate was the highest. Since B. infantis Y1, B. breve Y8 and B. longum Y10 are co-cultured during the industrial production of VSL-3, the kinetic characteristics of these strains can explain their different concentrations in the probiotic preparation. A validation of the PCR quantification method was performed by identifying a representative number of isolates from the bacterial mixtures with automated ribotyping. The methodology described represents a useful tool for the specific quantitative detection of bacterial strains and species in complex mixtures such as pharmaceutical preparations, dairy starter cultures, faecal samples and biopsies.  相似文献   

13.
AIMS: The aim of the study was the development of a sensitive human-specific quantitative real-time PCR assay for microbial faecal source tracking (MST) in alpine spring water. The assay detects human-specific faecal DNA markers (BacH) from 16S rRNA gene sequences from the phylum Bacteroidetes using TaqMan minor groove binder probes. METHODS AND RESULTS: The qualitative and quantitative detection limits of the PCR assay were 6 and 30 marker copies, respectively. Specificity was proved by testing 41 human faeces and waste water samples and excluding cross-amplification from 302 animal faecal samples from Eastern Austria. Marker concentrations in human faecal material were in the range from 6.6 x 10(9) to 9.1 x 10(10) marker equivalents per gram. The method was sensitive enough to detect a few 100 pg of faeces in faecal suspensions. The assay was applied on water samples from an alpine karstic spring catchment area and the results reflected the expected levels of human faecal influence. CONCLUSIONS: The method exhibited sufficient sensitivity to allow quantitative source tracking of human faecal impact in the investigated karstic spring water. Significance AND IMPACT OF THE STUDY: The developed method constitutes the first quantitative human-specific MST tool sensitive enough for investigations in ground and spring water.  相似文献   

14.
For infants, the introduction of food other than breast milk is a high risk period due to diarrheal diseases, and may be corroborated with a shift in the faecal microbiota. This longitudinal study was the first undertaken to understand the effect of the supplementation on the infant's faecal microbiota and particularly the bifidobacteria. Eleven infants were enrolled. Their faecal microbiota were analysed using temporal temperature gradient gel electrophoresis (TTGE) with bacterial and bifidobacterial primers. In parallel, bifidobacterial counts were followed using competitive PCR. Three periods were distinguished: exclusive breastfeeding (Bf period), weaning (i.e. formula-milk addition, W period) and postweaning (i.e. breastfeeding cessation, Pw period). The bifidobacterial counts were not modified, reaching 10.5 (Log10 cells g(-1) wet weight). In the TTGE profiles, the main identified bands corresponded to Escherichia coli, Ruminococcus sp. and Bifidobacterium sp., more precisely Bifidobacterium longum, Bifidobacterium infantis and Bifidobacterium breve. For both TTGE profiles, the analysis of the distance suggested a maturation of the faecal microbiota but no correlation could be established with the diet. Despite a high interindividual variability, composition of the faecal microbiota appeared more homogenous after weaning and this point may be correlated with the cessation of breastfeeding.  相似文献   

15.
PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.  相似文献   

16.
Pollution of the environment by human and animal faecal pollution affects the safety of shellfish, drinking water and recreational beaches. To pinpoint the origin of contaminations, it is essential to define the differences between human microbiota and that of farm animals. A strategy based on real-time quantitative PCR (qPCR) assays was therefore developed and applied to compare the composition of intestinal microbiota of these two groups. Primers were designed to quantify the 16S rRNA gene from dominant and subdominant bacterial groups. TaqMan® probes were defined for the qPCR technique used for dominant microbiota. Human faecal microbiota was compared with that of farm animals using faecal samples collected from rabbits, goats, horses, pigs, sheep and cows. Three dominant bacterial groups ( Bacteroides/Prevotella, Clostridium coccoides and Bifidobacterium ) of the human microbiota showed differential population levels in animal species. The Clostridium leptum group showed the lowest differences among human and farm animal species. Human subdominant bacterial groups were highly variable in animal species. Partial least squares regression indicated that the human microbiota could be distinguished from all farm animals studied. This culture-independent comparative assessment of the faecal microbiota between humans and farm animals will prove useful in identifying biomarkers of human and animal faecal contaminations that can be applied to microbial source tracking methods.  相似文献   

17.
AIMS: The aim of the present study was to compare several molecular methods for the identification and genotyping of bifidobacteria, and further to investigate genetic heterogeneity and functional properties of bifidobacterial isolates from intestinal samples of Finnish adult subjects. METHODS AND RESULTS: A total of 153 intestinal bifidobacterial isolates were included in initial screening and 34 isolates were further characterized. Identification results obtained with PCR-ELISA and ribotyping were well in accordance with each other, while randomly amplified polymorphic DNA (RAPD) gave tentative identification only to Bifidobacterium bifidum and to 65% of the B. longum isolates. The most commonly detected species were B. longum biotype longum followed by B. adolescentis and B. bifidum. In addition, B. animalis (lactis), B. angulatum and B. pseudocatenulatum were found. Ribotyping and pulsed-field gel electrophoresis (PFGE) proved to be discriminatory methods for bifidobacteria, but also RAPD revealed intraspecies heterogeneity. Besides two B. animalis (lactis) isolates with very close similarity to a commercially available probiotic strain, none of the intestinal isolates showed optimal survival in all tolerance (acid, bile and oxygen) or growth performance tests. CONCLUSIONS: Several species/strains of bifidobacteria simultaneously colonize the gastrointestinal tract of healthy Finnish adults and intestinal Bifidobacterium isolates were genetically heterogeneous. Functional properties of bifidobacteria were strain-dependent. SIGNIFICANCE AND IMPACT OF THE STUDY: Applicability of ribotyping with the automated RiboPrinter System for identification and genotyping of bifidobacteria was shown in the present study.  相似文献   

18.
Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR   总被引:5,自引:0,他引:5  
AIMS: To develop a real-time polymerase chain reaction (PCR) method for rapid detection and quantification of Oenococcus oeni in wine samples for monitoring malolactic fermentation. METHODS AND RESULTS: Specific primers and fluorogenic probe targeted to the gene encoding the malolactic enzyme of O. oeni were developed and used in real-time PCR assays in order to quantify genomic DNA either from bacterial pure cultures or wine samples. Conventional CFU countings were also performed. The PCR assay confirmed to be specific for O. oeni species and significantly correlated to the conventional plating method both in pure cultures and wine samples (r = 0.902 and 0.96, respectively). CONCLUSIONS: The DNA extraction from wine and the real-time PCR quantification assay, being performed in ca 6 h and allowing several samples to be concurrently processed, provide useful tools for the rapid and direct detection of O. oeni in wine without the necessity for sample plating. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid quantification of O. oeni by a real-time PCR assay can improve the control of malolactic fermentation in wines allowing prompt corrective measures to regulate the bacterial growth.  相似文献   

19.
20.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号