首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

2.
A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species (n = 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly higher probabilities of local extinction following fragmentation. The majority of these species were predators; 42% of all abundant predator species were significantly more likely to be absent from samples in forest fragments than in undisturbed forest. These figures are regarded as minimum estimates for the entire beetle assemblage because rarer species will inevitably have higher extinction probabilities. Absolute loss of biodiversity will affect ecosystem process rates, but the differential loss of species from trophic groups will have an even greater destabilizing effect on food web structure and ecosystem function.  相似文献   

3.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

4.
东太平洋中部中上层鲨鱼群落营养生态位分化   总被引:1,自引:0,他引:1  
鲨鱼在大洋生态系统中占据着重要的生态地位,其作为顶级捕食者,通过下行效应直接影响生态系统的稳定.稳定同位素技术是目前研究摄食生态学强有力的手段之一,可利用碳氮稳定同位素在食物网中的特性分别指示鲨鱼的食物来源和营养级.本研究选取8种130尾采集自东太平洋中部的中上层鲨鱼,应用稳定同位素绘制其种群生态位图谱,比较不同种群间的生态地位及资源分配方式上的差异.结果表明:不同鲨鱼种群碳、氮稳定同位素比值存在显著差异;8种鲨鱼在东太平洋生态系统中的营养级为4.3~5.4,大青鲨、尖吻鲭鲨与其他6种鲨鱼存在摄食隔离,表现出独特的营养生态地位.这些结果充分证明大洋性中上层鲨鱼并非生态系统的冗余种,其营养生态位的独特性不会被其他捕食者简单地替代和弥补.  相似文献   

5.
Single trophic‐level studies of the relationship between biodiversity and ecosystem functioning highlight the importance of mechanisms such as resource partitioning, facilitation, and sampling effect. In a multi‐trophic context, trophic interactions such as intraguild predation may also be an important mediator of this relationship. Using a salt‐marsh food web, we investigated the interactive effects of predator species richness (one to three species) and trophic composition (strict predators, intraguild predators, or a mixture of the two) on ecosystem functions such as prey suppression and primary production via trophic cascades. We found that the trophic composition of the predator assemblage determined the impact of increasing predator species richness on the occurrence of trophic cascades. In addition, increasing the proportion of intraguild predator species present diminished herbivore suppression and reduced primary productivity. Therefore, trophic composition of the predator assemblage can play an important role in determining the nature of the relationship between predator diversity and ecosystem function.  相似文献   

6.
The identification of interspecific links (trophic niche) is important to characterize resource use of a predator, and to know its trophic role (for example, mesopredator or top predator) in the food web. In this study, we examined: a) the trophic ecology of Scomberomorus sierra as a predator (niche breadth, trophic overlap, and trophic position) and b) its presence as a prey in the diets of the region´s top predators, to evaluate the critical link of S. sierra as a probable mesopredator in the food web of the southeastern Gulf of California (GC). Based on %PSIRI, the dominant diet of S. sierra were engraulids and cephalopods. The diet was similar between sexes and among size-classes. However, the isotopic niche breadth values and δ15N variance (>1) reflect a broad niche for young adults likely related to a) changes in morphology (e.g., size of the mouth), b) development of the visual system, and c) changes in the energy requirements of the species reproductive stages. Seasonal changes in prey species’ availability and abundance resulted in isotopic variations, indicating that S. sierra is an opportunistic predator. A wide range in trophic position value (from 3.8 to 4.2) indicated that it also is an intermediary carnivore, with a high degree of trophic plasticity. Although S. sierra has not a dominant role in top predators’ diets, they share some prey species such as anchovies and other fish, depending on predator size. Therefore, S. sierra is a species with many prey-predator relationships in the southeastern GC food webs that may be considered a critical trophic link. This information is crucial for an ecosystem-based fisheries management in the Gulf of California.  相似文献   

7.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

8.
The large vulnerability of top predators to human-induced disturbances on ecosystems is a matter of growing concern. Because top predators often exert strong influence on their prey populations their extinction can have far-reaching consequences for the structure and functioning of ecosystems. It has, for example, been observed that the local loss of a predator can trigger a cascade of secondary extinctions. However, the time lags involved in such secondary extinctions remain unexplored. Here we show that the loss of a top predator leads to a significantly earlier onset of secondary extinctions in model communities than does the loss of a species from other trophic levels. Moreover, in most cases time to secondary extinction increases with increasing species richness. If local secondary extinctions occur early they are less likely to be balanced by immigration of species from local communities nearby. The implications of these results for community persistence and conservation priorities are discussed.  相似文献   

9.
Guppies (Poecilia reticulata) in Trinidadian streams are found with a diversity of predators in the lower reaches of streams, but few predators in the headwaters. These differences have caused the adaptive evolution of guppy behaviour, morphology, male colouration and life history. Waterfalls often serve as barriers to the upstream distribution of predators and/or guppies. Such discontinuities make it possible to treat streams like giant test tubes by introducing guppies or predators to small segments of streams from which they were previously excluded. Such experiments enable us to document how fast evolution can occur and the fine spatial scales over which adaptation is possible. They also demonstrate that the role predators play in structuring this ecosystem resembles many others studied from a more purely ecological perspective; in these streams, as elsewhere, predators depress the numbers of individuals in prey species which in turn reduces the effects of the prey species on other trophic levels and hence the structure of the ecosystem. A focus on predators is important in conservation biology because predators are often the organisms that are most susceptible to local extinction. Their selective loss occurs because large predators have been deliberately exterminated and/or are more susceptible to environmental disturbances. Furthermore, we will argue that predator re-introductions might be destabilizing if, in the absence of predators, their prey have evolved in a fashion that makes them highly susceptible to predation, even after time intervals as short as 50-100 years. A better understanding of the evolutionary impacts of top predators will be critical goal for the policy and practice of large carnivore restoration in the future.  相似文献   

10.
1. Invasions of top predators may have strong cascading effects in ecosystems affecting both prey species abundance and lower trophic levels. A recently discussed factor that may enhance species invasion is climate change and in this context, we studied the effects of an invasion of northern pike into a subarctic lake ecosystem formerly inhabited by the native top predator Arctic char and its prey fish, ninespined stickleback. 2. Our study demonstrated a strong change in fish community composition from a system with Arctic char as top predator and high densities of sticklebacks to a system with northern pike as top predator and very low densities of sticklebacks. A combination of both predation and competition from pike is the likely cause of the extinction of char. 3. The change in top predator species also cascaded down to primary consumers as both zooplankton and predator‐sensitive macroinvertebrates increased in abundance. 4. Although the pike invasion coincided with increasing summer temperatures in the study area we have no conclusive evidence that the temperature increase is the causal mechanism behind the pike invasion. But still, our study provides possible effects of future pike invasions in mountain lakes related to climate change. We suggest that future pike invasions will have strong effects in lake ecosystems, both by replacing native top consumers and through cascading effects on lower trophic levels.  相似文献   

11.
Ecological networks are tightly interconnected, such that loss of a single species can trigger additional species extinctions. Theory predicts that such secondary extinctions are driven primarily by loss of species from intermediate or basal trophic levels. In contrast, most cases of secondary extinctions from natural systems have been attributed to loss of entire top trophic levels. Here, we show that loss of single predator species in isolation can, irrespective of their identity or the presence of other predators, trigger rapid secondary extinction cascades in natural communities far exceeding those generally predicted by theory. In contrast, we did not find any secondary extinctions caused by intermediate consumer loss. A food web model of our experimental system—a marine rocky shore community—could reproduce these results only when biologically likely and plausible nontrophic interactions, based on competition for space and predator‐avoidance behaviour, were included. These findings call for a reassessment of the scale and nature of extinction cascades, particularly the inclusion of nontrophic interactions, in forecasts of the future of biodiversity.  相似文献   

12.
Trophic downgrading is a major concern for conservation scientists. The largest consumers in many ecosystems have become either rare or extirpated, leading to worry over the loss of their ecosystem function. However, trophic downgrading is not a uniquely modern phenomenon. The extinction of 34 genera of megafauna from North America ~13 000 yr ago must have led to widespread changes in terrestrial ecosystem function. Studies that have examined the event address impacts on vegetative structure, small mammal communities, nutrient cycling, and fire regimes. Relatively little attention has been paid to community changes at the top of the food chain. Here, we examine the response of carnivores in North America to the Pleistocene extinction. We employ fossil data to model the climatic niche of endemic canids, including the extinct dire wolf Canis dirus, over the last 20 000 yr. Quantifying the abiotic niche allows us to account for expected changes due to climate fluctuations over the Late Quaternary; deviations from expected responses likely reveal influences of competition and/or resource availability. We quantify the degree of niche conservatism and interspecific overlap to assess species and community responses among canids. We also include in our analyses a novel introduced predator, the domestic dog Canis lupus familiaris, which accompanied humans into the New World. We find that endemic canid species display low fidelity to their climatic niche through time, We find that survivors increasingly partition their climatic niche throughout the Holocene and, surprisingly, do not expand into niche space presumably vacated by the extinction of very large carnivores. These results suggest that loss of megaherbivores and competition with humans likely outweighed advantages conferred from the loss of very large predators. We also find that wolves and dogs decrease their niche overlap throughout the Holocene, suggesting a distinctive relationship between dogs and man.  相似文献   

13.
Several recent studies have shown that food web coupling by ontogenetic niche shifts can generate alternative stable states (ASS). However, these studies mainly considered cases where juvenile and adult stages are the top level consumers. The conditions under which ASS occur in more structurally diverse food web configurations have not been explored. In this study, I examine the influence of food-chain length and the trophic positions of juveniles and adults on the existence of ASS. Comprehensive model analysis showed that if both juveniles and adults are top predators, ASS are possible irrespective of their trophic level, because of overcompensation in reproduction and maturation due to strong density dependence, as previously predicted. However, the following potential food-web effects were found: ASS potential (1) disappears if either or both the juveniles and adults have a predator and (2) is once again observed if another predator is added on the stage-specific predator. These mechanisms involve (1) top–down control that relaxes intrastage food competition and (2) top–down cascade that intensifies the intrastage competition, respectively. Furthermore, it was illustrated that the environmental conditions under which ASS occurred varied in complex ways with the coupled food-web configurations. My results provide a novel concept that anthropogenic changes in local community structure (e.g., species extinction and invasion) propagate through space and may cause or prevent regime shifts in broad-scale community structure by altering the resilience to environmental perturbations.  相似文献   

14.
We manipulated the diversity of top predators in a three trophic level marine food web. The food web included four top benthic marine fish predators (black goby, rock goby, sea scorpion and shore rockling), an intermediate trophic level of small fish, and a lower trophic level of benthic invertebrates. We kept predator density constant and monitored the response of the lower trophic levels. As top predator diversity increased, secondary production increased. We also observed that in the presence of the manipulated fish predators, the density of small gobiid fish (intermediate consumers) was suppressed, releasing certain groups of benthic invertebrates (caprellid amphipods, copepods, nematodes and spirorbid worms) from heavy intermediate predation pressure. We attribute the mechanism responsible for this trophic cascade to a trait-mediated indirect interaction, with the small gobiid fish changing their use of space in response to altered predator diversity. In the absence of top fish predators, a full-blown trophic cascade occurs. Therefore the diversity of predators reduces the likelihood of trophic cascades occurring and hence provides insurance against the loss of an important ecosystem function (i.e. secondary production).  相似文献   

15.
In the study of food webs, the existence and explanation of recurring patterns, such as the scale invariance of linkage density, predator–prey ratios and mean chain length, constitute long-standing issues. Our study focused on litter-associated food webs and explored the influence of detritivore and predator niche width (as δ13C range) on web topological structure. To compare patterns within and between aquatic and terrestrial ecosystems and take account of intra-habitat variability, we constructed 42 macroinvertebrate patch-scale webs in four different habitats (lake, lagoon, beech forest and cornfield), using an experimental approach with litterbags. The results suggest that although web differences exist between ecosystems, patterns are more similar within than between aquatic and terrestrial web types. In accordance with optimal foraging theory, we found that the niche width of predators and prey increased with the number of predators and prey taxa as a proportion of total taxa in the community. The tendency was more marked in terrestrial ecosystems and can be explained by a lower per capita food level than in aquatic ecosystems, particularly evident for predators. In accordance with these results, the number of links increased with the number of species but with a significantly sharper regression slope for terrestrial ecosystems. As a consequence, linkage density, which was found to be directly correlated to niche width, increased with the total number of species in terrestrial webs, whereas it did not change significantly in aquatic ones, where connectance scaled negatively with the total number of species. In both types of ecosystem, web robustness to rare species removal increased with connectance and the niche width of predators. In conclusion, although limited to litter-associated macroinvertebrate assemblages, this study highlights structural differences and similarities between aquatic and terrestrial detrital webs, providing field evidence of the central role of niche width in determining the structure of detritus-based food webs and posing foraging optimisation constraints as a general mechanistic explanation of food web complexity differences within and between ecosystem types.  相似文献   

16.
Cascading effects of predator diversity and omnivory in a marine food web   总被引:4,自引:1,他引:3  
Over‐harvesting, habitat loss and exotic invasions have altered predator diversity and composition in a variety of communities which is predicted to affect other trophic levels and ecosystem functioning. We tested this hypothesis by manipulating predator identity and diversity in outdoor mesocosms that contained five species of macroalgae and a macroinvertebrate herbivore assemblage dominated by amphipods and isopods. We used five common predators including four carnivores (crabs, shrimp, blennies and killifish) and one omnivore (pinfish). Three carnivorous predators each induced a strong trophic cascade by reducing herbivore abundance and increasing algal biomass and diversity. Surprisingly, increasing predator diversity reversed these effects on macroalgae and altered algal composition, largely due to the inclusion and performance of omnivorous fish in diverse predator assemblages. Changes in predator diversity can cascade to lower trophic levels; the exact effects, however, will be difficult to predict due to the many complex interactions that occur in diverse food webs.  相似文献   

17.
The effects of energy on food web structure have been debated for at least 80 years. Nevertheless, the empirical evidence is meager, especially from terrestrial ecosystems. We analyzed long-term temporal variation in food chain length in a semiarid continental ecosystem, where productivity shows large interannual variations. Incidence of nonherbivorous prey in predator diet was used as a proxy of trophic position, allowing us to analyze the effect of productivity on food chain length within the assemblage of top predators (which comprises the most abundant and persistent top predators in the system) and to compare observed patterns at the species and assemblage levels. At the species level, the relationship between trophic position and productivity took different forms, varying in magnitude and shape. This pattern contrasts with the consistent increase in food chain length, with productivity observed at the assemblage level. Our results indicate that productivity can be a main determinant of food chain length, but not necessarily because of energy limitation. Further, the increase in food chain length with available energy probably represents an aggregate attribute, driven to a large extent by predators with higher consumption rates, rather than being the result of compensatory responses among predators.  相似文献   

18.
The relationship between biodiversity and ecosystem functioning, and the mechanisms underpinning the food web stability, have been intensively investigated in ecological research. The ubiquities of generalists in natural food webs and its important role in dictating these ecosystem properties have been generally recognized. However, how competition between multiple top predators shape these ecosystem properties and determine the success of invasive predators remain largely unexplored. Here, we use a well-developed food web model to investigate the effects of prey preference of top predators on ecosystem functioning and food web stability in both local and invasive conditions. We design several modeling scenarios to mimic combinations of different types of top predators (specialist/generalist) and their origins (local/invasive). Our model theoretically shows that lower exploitation competition for prey between top predators (with distinct prey preferences featured by higher attack rates) would be beneficial for the ecosystem functioning and food web stability. We also demonstrate that the success of top predator invasion depends on the prey preference of both local and invasive top predators. Sensitivity analysis on the model further supports our findings. Our results highlight the importance of prey preference of multiple top predators in manipulating the properties of multi-trophic ecosystems. Our findings may have important implications because the current ongoing global changes profoundly change the phenology of many biological systems and create trophic mismatch, which may manipulate prey preference of top predators and in turn deteriorate ecosystem functioning and food web stability.  相似文献   

19.
Because species interactions are often context‐dependent, abiotic factors such as temperature and biotic factors such as food quality may alter species interactions with potential consequences to ecosystem structure and function. For example, altered predator–prey interactions may influence the dynamics of trophic cascades, affecting net primary production. In a three‐year field experiment, we manipulated a plant–grasshopper–spider food chain in mesic tallgrass prairie to investigate the effects of temperature and food quality on grasshopper performance, and to understand the direct and indirect tritrophic interactions that contribute to trophic cascades. Because spiders are active at cooler temperatures than grasshoppers in our system, we hypothesized that predator effects would be strongest in cooled treatments, and weakest in warmed treatments. Grasshopper spider interactions were highly context‐dependent and varied significantly with food quality, temperature treatment and year. Spiders most often reduced grasshopper survival in the cooled and ambient temperature treatments, but had little to no effect on grasshopper survival in the warmed treatments, as hypothesized. In some years, plants compensated for grasshopper herbivory and trophic cascades were not observed despite significant effects of predators on grasshopper survival. However, in the year they were observed, trophic cascades only occurred in cooled treatments where predator effects on grasshoppers were strongest. Predicting ecosystem responses to climate change will require an understanding of how temperature influences species interactions. Our results demonstrate that changes in daily temperature regimes can alter predator–prey interactions among arthropods with consequences for ecosystem processes such as primary production and the relative importance of top–down and bottom–up processes.  相似文献   

20.
Since Gleason and Clements, our understanding of community dynamics has been influenced by theories emphasising either dispersal or niche assembly as central to community structuring. Determining the relative importance of these processes in structuring real‐world communities remains a challenge. We tracked reef fish community reassembly after a catastrophic coral mortality in a relatively unfished archipelago. We revisited the stochastic model underlying MacArthur and Wilson's Island Biogeography Theory, with a simple extension to account for trophic identity. Colonisation and extinction rates calculated from decadal presence‐absence data based on (1) species neutrality, (2) trophic identity and (3) site‐specificity were used to model post‐disturbance reassembly, and compared with empirical observations. Results indicate that species neutrality holds within trophic guilds, and trophic identity significantly increases overall model performance. Strikingly, extinction rates increased clearly with trophic position, indicating that fish communities may be inherently susceptible to trophic downgrading even without targeted fishing of top predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号