首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysyl oxidase is a specific amine oxidase that catalyzes the formation of aldehyde cross-link intermediates in collagen and elastin. In this study, lysyl oxidase from embryonic chick cartilage was purified to constant specific activity and a single protein band on sodium dodecyl sulfate acrylamide gel electrophoresis. This band had an apparent molecular weight of 62,000. The eluted protein cross-reacted with inhibiting antisera developed against highly purified lysyl oxidase. The highly purified enzyme was active with both insoluble elastin and embryonic chick skin or bone collagen precipitated as reconstituted, native fibrils. There was low activity with nonhydroxylated collagen, collagen monomers, or native fibrils isolated from lathyritic calvaria. The maximum number of aldehyde intermediates formed per molecule of collagen that became insoluble was two. These results indicate that lysyl oxidase has maximum activity on ordered aggregates of collagen molecules that may be overlapping associations of only a few collagen molecules across. Formation of aldehyde intermediates and cross-links during fibril formation may facilitate the biosynthesis of stable collagen fibrils and contribute to increased fibril tensile strength in vivo.  相似文献   

2.
The collagen produced in response to an injury of human skin is initially stabilized by a cross-link derived from hydroxyallysine, and characteristic of embryonic skin. In normal healing there is a change over with time to the cross-link derived from allysine, which is typical of young skin collagen. In contrast, hypertrophic scars fail to follow the time-related changes of normal skin, but retain the characteristics of embryonic collagen, indicating a continued rapid turnover of the collagen. This is further supported by the high proportion of the embryonic Type III collagen present in hypertrophic scars.  相似文献   

3.
The loci of the three amino acid residues that contribute their prosthetic groups to form the stable, nonreducible, trifunctional intermolecular cross-link histidinohydroxylysinonorleucine in skin collagen fibrils were identified. Two apparently homogeneous three-chained histidinohydroxylysinonorleucine cross-linked peptides were chromatographically isolated. They were obtained from a tryptic digest of denatured unreduced 6 M guanidine hydrochloride insoluble bovine skin collagen. Amino acid and sequence analyses demonstrated that the prosthetic groups of alpha 1(I)-chain Hyl-87, alpha 1(I)-chain Lys-16c, and alpha 2(I)-chain His-92 formed the cross-link. The latter results served to define the locus of the stable, nonreducible trifunctional moiety. Identical types of analyses were performed on the three-chained peptides isolated after bacterial collagenase digestion of the cross-linked tryptic peptides. This confirmed the initial identification and location of the three peptides linked by the cross-link. In addition, data reported here provide for a correction of the micromolecular structure for the alpha 2(I) chain. Stereochemical considerations concerning this trifunctional cross-link's specific locus indicate that the steric relationships between the alpha chains of skin and skeletal tissue collagens are fundamentally different and the intermolecular relationships in skin fibrils are specific for skin. The same molecular relationships also indicate that histidinohydroxylysinonorleucine links three molecules of collagen. The stereochemistry of cross-linking for skin collagen is in accordance with and explains the X-ray findings of a 65-nm periodicity found for this tissue [Stinson, R. H., & Sweeny, P. R. (1980) Biochim. Biophys. Acta 621, 158; Brodsky, B., Eikenberry, E. F., & Cassidy, K. (1980) Biochim. Biophys. Acta 621, 162].  相似文献   

4.
The level of the 3-hydroxypyridinium cross-links was investigated in one month old rats. It was established that all compounds which exhibit the lathyrogenic effect (β-aminopropionitrile fumarate, thiosemicarbazide, oxalylhydrazide, D-penicillamine), decrease the ammount of this cross-link in collagen from different tissues (hyaline cartilage, fibrocartilage, bone).In elastin obtained from aorta of ligamentum nuchae a similar decrease in the 3-hydroxypyridinium cross link was revealed as well. This fact is strongly in favour of the biosynthetic mechanism proposed by Eyre and Oguchi (3).The decrease in the hydroxypyridinium cross-link content after pepsin treatment of insoluble collagen is discussed on the basis of the present knowledge of the collagen structure.  相似文献   

5.
It has been shown that in the skin of chronically irradiated rats the proportion of collagen type III as compared to collagen type I is increased; on the other hand, no changes in the overall proportion to collagen were observed in the skin. It appears that the increased proportion of collagen type III in chronically irradiated rats is responsible for the decreased solubility of cutaneous collagen in these animals. Concomitantly, indirect evidence was accumulated for the presence of an additional cross-link in type III collagen, present only when irradiated animals served as the collagen source. This cross-link is located subterminally as long as it is not removed by limited pepsin digestion. It was concluded that the physiological decrease in solubility and the decrease in solubility observed in chronically irradiated animals have a different molecular background.  相似文献   

6.
The conversion of the reducible divalent cross-links in collagen to non-reducible multivalent cross-links in mature collagen has resulted in the identification of several new amino acids as the putative mature cross-link. None of these compounds has completely satisfied the necessary criteria. We have now isolated an amino acid of high Mr, derived from lysine, that is only present in high-Mr peptides derived from mature collagen. Its increase with age of the tissue correlates with the decrease in the reducible cross-links, and it is present both in mature skin and bone, which are initially cross-linked through the aldimine and oxo-imine divalent cross-link respectively. We propose that this amino acid, as yet incompletely characterized and designated compound M, is a major cross-link of mature collagen.  相似文献   

7.
Two aldimine bonds have been shown to be present as stabilizing cross-links in intact collagen fibres from soft tissues: dehydrohydroxylysinonorleucine as a major component and dehydrolysinonorleucine being present in trace quantities. In the highly insoluble collagens less dehydrohydroxylysinonorleucine is present but the proportion of dehydrolysinonorleucine increases. In elastin the latter aldimine is reduced in vivo to give a more stable cross-link but no comparable reduction could be detected with either of the aldimines present in collagen.  相似文献   

8.
Recent studies show that native collagen fibers in the extracellular space can be subject to nonenzymatic glycosylation and that the extent of such glycosylation increases in clinical hyperglycemia and aging. In the present study, a comparison was made on the extent of glycosylation in rat tail tendon and in the soluble and insoluble fractions of collagen separated from rat skin after in vivo labeling with [14C]glucose. It was observed that nonenzymatic glycosylation occurred maximally in the salt-soluble fraction as measured by the level of ketoamine linked hexose. 14C radioactivity incorporation as well as the number of free amino groups was also increased in this fraction. However, the amounts of O-glycosidically linked sugars did not show much variation between the soluble and insoluble fractions. These findings could be correlated to the enhanced metabolic turnover of newly synthesized collagen in diabetics.  相似文献   

9.
The AA, reports the variations of collagen of carcass and skin of overnourished and proteic and caloric malnourished rats. The level of collagen is higher in malnourished when compared with normal and overnourished rats. The insoluble hydroxyproline concentration is higher in malnourished than in overnourished rats. This is reported to a variation of metabolic enzymatic patterns related to the catabolism of collagen.  相似文献   

10.
As the largest organ in the human body, the skin has multiple functions of which one of the most important is the protection against various harmful stressors. The keratinised stratified epidermis and an underlying thick layer of collagen-rich dermal connective tissues are important components of the skin. The environmental stressors such as ultraviolet radiation (UVR) and pollution increase the levels of reactive oxygen species (ROS), contributing to clinical manifestations such as wrinkle formation and skin aging. Skin aging is related to the reduction of collagen production and decrease of several enzymatic activities including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis; and tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. In addition to alterations of DNA, signal transduction pathways, immunology, UVR, and pollution activate cell surface receptors of keratinocytes and fibroblasts in the skin. This action leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. Therefore, an efficient antioxidants strategy is of major importance in dermis and epidermis layers. Marine resources have been recognised for their biologically active substances. Among these, marine algae are rich-sources of metabolites, which can be used to fight against oxidative stress and hence skin aging. These metabolites include, among others, mycosporine-like amino acids (MAAs), polysaccharides, sulphated polysaccharides, glucosyl glycerols, pigments, and polyphenols. This paper reviews the role of oxidative processes in skin damage and the action of the compounds from algae on the physiological processes to maintain skin health.  相似文献   

11.
A hydroxylysine-rich type I collagen has been isolated from pepsin-digested porcine heart valve. The ratio of alpha1 to alpha2 in the isolated molecule was 2:1. The component alpha chains exhibited unusual chromatographic behavior in comparison to corresponding chains from human dermis and lathyritic rat skin collagen. The composition of component cyanogen bromide peptides identified the alpha chains as authentic type I chains and demonstrated hydroxylysine enrichment throughout the length of the chain. delta6-Dehydro-5,5'dihydroxylysinonorleucine, a collagen cross-link derived from two hydroxylysyl residues and ordinarily found in hard tissue collagens was found to be the predominant cross-link in heart valve.  相似文献   

12.
Collagen extracted from rat skin by neutral-salt solutions contains less aldehydes than the more insoluble collagen fractions. The concentration of aldehydes in collagen is directly related to its capacity to form stable cross-linked gels, which do not redissolve on cooling and become more insoluble in a variety of reagents. Whereas the absorption spectrum of neutral-salt-soluble collagen treated with N-methylbenzothiazolone hydrazone resembles that of acetaldehyde, the more insoluble collagen fractions show increasing amounts of a component that behaves like an alphabeta-unsaturated aldehyde. The ratio between alpha- and beta-sub-units present in a particular fraction of soluble collagen seems to be constant and independent of the age of the animal. Neutral-salt-soluble collagen, which has a low concentration of beta-components, will generate intramolecular bonds if gelled at 37 degrees . These intramolecular bonds seem to precede the formation of stable intermolecular cross-links, since these gels can redissolve when cooled to yield a soluble collagen with a higher content of beta-components of intramolecular origin.  相似文献   

13.
Bone and dentin collagen are less susceptible to solubilization by pepsin digestion then is skin collagen. Digestion at 4 degrees C for 72 h solubilized only 35.3% of bovine cortical bone and 5.6% of bovine dentin compared with nearly 100% dissolution of bovine skin. Sodium dodecyl sulfate-acrylamide gel electrophoresis and molecular sieve chromatography showed that, for bone and dentin, intact alpha chains and cross-linked aggregates of beta, gamma and higher weight remained intact after pepsin solubilization but lower molecular weight fragments also were prevalent indicating chain scission in helical regions. Electron microscopic examination of segment long spacing precipitates of the soluble collagens confirmed the presence of solubilized polymerized collagen. The principal reducible cross-link in both bone and dentin was the precursor of dihydroxylsinonorleucine and this cross-link was also present in the solubilized collagens. Small amounts of non-collagenous proteins and glycosaminoglycans of different compositions in dentin and bone resisted extraction before pepsin digestion. However, the differences in solubilization of the collagens have been related to differences in cross-linkage placement.  相似文献   

14.
The caudal tendons in tunas and other scombrid fish link myotomal muscle directly to the caudal fin rays, and thus serve to transfer muscle power to the hydrofoil-like tail during swimming. These robust collagenous tendons have structural and mechanical similarity to tendons found in other vertebrates, notably the leg tendons of terrestrial mammals. Biochemical studies indicate that tuna tendon collagen is composed of the (alpha1)(2),alpha2 heterotrimer that is typical of vertebrate Type I collagen, while tuna skin collagen has the unusual alpha1,alpha2,alpha3 trimer previously described in the skin of some other teleost species. Tuna collagen, like that of other fish, has high solubility due to the presence of an acid-labile intermolecular cross-link. Unlike collagen in mammalian tendons, no differences related to cross-link maturation were detected among tendons in tuna ranging from 0.05 to 72 kg (approx. 0.25-6 years). Tendons excised post-mortem were subjected to load cycling to determine the modulus of elasticity and resilience (mean of 1.3 GPa and 90%, respectively). These material properties compare closely to those of leg tendons from adult mammals that can function as effective biological springs in terrestrial locomotion, but the breaking strength is substantially lower. Peak tendon forces recorded during steady swimming appear to impose strains of much less than 1% of tendon length, and no more than 1.5% during bursts. Thus, the caudal tendons in tunas do not appear to function as elastic storage elements, even at maximal swimming effort.  相似文献   

15.
Fibrotic processes in humans are characterised by an excessive accumulation of collagen containing increased levels of hydroxyallysine-derived cross-links. The occurrence of these cross-links appears to be an important criterion in assessing the irreversibility of fibrosis. We hypothesise that increased hydroxyallysine cross-linking results in a collagenous matrix that is less susceptible to proteolytic degradation and therefore the collagen deposition is no longer reversible. In this report, we show that collagen matrices with increased hydroxyallysine cross-link levels were less susceptible to matrix metalloproteinase 1 degradation than are collagen matrices containing low hydroxyallysine levels. These data indicate that the type of collagen cross-link influences collagen catabolism. In vivo evidence for the importance of the cross-linking type in determining the reversibility of the fibrotic process was found using the bleomycin-induced skin fibrosis mouse model. The analysis of the accumulated collagen in the fibrotic skin of bleomycin-treated mice did not reveal an increase in hydroxyallysine cross-link levels. In concurrence with our hypothesis, the collagen accumulation resolved in time when the mice were no longer receiving bleomycin treatment, showing the reversibility of the fibrosis. In conclusion, our data indicate that the type of collagen cross-linking is an important factor in determining whether the outcome of the fibrotic process is reversible or not.  相似文献   

16.
Collagen fractions content and level of collagen catabolites in body fluids were determined in normal, hypo- and hyperthyroid guinea pigs. An increase of urinary excretion of hydroxyproline and hydroxylysine as well as concentration of these amino acids in blood serum was found in hyperthyroidism, and a decrease was shown in hyperthyroid guinea pigs. Hyperthyroidism stimulated an increase of neutral-salt-soluble and acid-soluble collagen in skin and liver, and a decrease of insoluble collagen in skin as well as increase of all collagen fractions in bone samples. Hypothyroidism induced a decrease of all collagen fractions in skin and liver, and an increase of acid-soluble and insoluble collagen in bone samples.  相似文献   

17.
Cathepsin B1. A lysosomal enzyme that degrades native collagen   总被引:26,自引:11,他引:15  
1. Experiments were made to determine whether the purified lysosomal proteinases, cathepsins B1 and D, degrade acid-soluble collagen in solution, reconstituted collagen fibrils, insoluble collagen or gelatin. 2. At acid pH values cathepsin B1 released (14)C-labelled peptides from collagen fibrils reconstituted at neutral pH from soluble collagen. The purified enzyme required activation by cysteine and EDTA and was inhibited by 4-chloromercuribenzoate, by the chloromethyl ketones derived from tosyl-lysine and acetyltetra-alanine and by human alpha(2)-macroglobulin. 3. Cathepsin B1 degraded collagen in solution, the pH optimum being pH4.5-5.0. The initial action was cleavage of the non-helical region containing the cross-link; this was seen as a decrease in viscosity with no change in optical rotation. The enzyme also attacked the helical region of collagen by a mechanism different from that of mammalian neutral collagenase. No discrete intermediate products of a specific size were observed in segment-long-spacing crystalloids (measured as native collagen molecules aligned with N-termini together along the long axis) or as separate peaks on gel filtration chromatography. This suggests that once an alpha-chain was attacked it was rapidly degraded to low-molecular-weight peptides. 4. Cathepsin B1 degraded insoluble collagen with a pH optimum below 4; this value is lower than that found for the soluble substrate, and a possible explanation is given. 5. The lysosomal carboxyl proteinase, cathepsin D, had no action on collagen or gelatin at pH3.0. Neither cathepsin B1 nor D cleaved Pz-Pro-Leu-Gly-Pro-d-Arg. 6. Cathepsin B1 activity was shown to be essential for the degradation of collagen by lysosomal extracts. 7. Cathepsin B1 may provide an alternative route for collagen breakdown in physiological and pathological situations.  相似文献   

18.
Solubility of collagen was increased and the proportion of insoluble collagen was reduced in the skin of both riboflavin as well as pyridoxine-deficient rats. Collagen content of the skin, and aldehyde concentration of salt-soluble collagen were also lower in the deficient groups. The alpha:beta subunit ratio of salt-soluble collagen was higher in riboflavin deficiency. In food-restricted weight-matched control groups, similar changes in collagen solubility, but of lesser magnitude were observed. Both food restriction and riboflavin deficiency decreased plasma PLP concentration. Increase in the solubility of collagen, decrease in the aldehyde content of soluble collagen and increase in the alpha:beta subunit ratio of soluble collagen, suggest that the maturation of collagen may be affected in pyridoxine or riboflavin deficiency. These molecular events may be etiologically related to the pathogenesis of the skin lesions in vitamin B2 or B6 deficiency.  相似文献   

19.
Aging and diabetes mellitus (DM) both affect the structure and function of the myocardium, resulting in increased collagen in the heart and reduced cardiac function. As part of this process, hyperglycemia is a stimulus for the production of advanced glycation end products (AGEs), which covalently modify proteins and impair cell function. The goals of this study were first to examine the combined effects of aging and DM on hemodynamics and collagen types in the myocardium in 12 dogs, 9-12 yr old, and second to examine the effects of the AGE cross-link breaker phenyl-4,5-dimethylthazolium chloride (ALT-711) on myocardial collagen protein content, aortic stiffness, and left ventricular (LV) function in the aged diabetic heart. The alloxan model of DM was utilized to study the effects of DM on the aging heart. DM induced in the aging heart decreased LV systolic function (LV ejection fraction fell by 25%), increased aortic stiffness, and increased collagen type I and type III protein content. ALT-711 restored LV ejection fraction, reduced aortic stiffness and LV mass with no reduction in blood glucose level (199 +/- 17 mg/dl), and reversed the upregulation of collagen type I and type III. Myocardial LV collagen solubility (%) increased significantly after treatment with ALT-711. These data suggest that an AGE cross-link breaker may have a therapeutic role in aged patients with DM.  相似文献   

20.
This study described the effect of fluoride ingestion (10 mg NaF/kg body weight per day) for up to 180 days, on the biosynthesis, maturation and degradation of rabbit skin collagen. Higher intake of fluoride interferes with the collagen biosynthesis resulting in a reduction in the collagen content (in terms of hydroxyproline). Fluoride administration increases the solubility of collagen by reducing the amount of cross-link precursors, thus impairing the cross-linking and maturation of tissue collagen fibers. Collagen degradation by the collagen-bound collagenase is increased due to the accumulation of higher pools of soluble collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号