首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The maximal activity of phosphate-dependent glutaminase was increased in the small intestine, decreased in the liver and unchanged in the kidney of late-pregnant rats. This was accompanied by increases in the size of both the small intestine and the liver. The maximal activity of phosphate-dependent glutaminase was increased in both the small intestine and liver but unchanged in the kidney of peak-lactating rats. Enterocytes isolated from late-pregnant or peak-lactating rats exhibited an enhanced rate of utilization of glutamine and production of glutamate, alanine and ammonia. Arteriovenous-difference measurements across the gut showed an increase in the net glutamine removed from the circulation in late-pregnant and peak-lactating rats, which was accompanied by enhanced rates of release of glutamate, alanine and ammonia. Arteriovenous-difference measurements for glutamine showed that both renal uptake and skeletal-muscle release of glutamine were not markedly changed during late pregnancy or peak lactation; but pregnant rats showed a hepatic release of the amino acid. It is concluded that, during late pregnancy and peak lactation, the adaptive changes in glutamine metabolism by the small intestine, kidneys and skeletal muscle of hindlimb are similar; however, the liver appears to release glutamine during late pregnancy, but to utilize glutamine during peak lactation.  相似文献   

2.
The small intestine is the major site of glutamine utilization in the mammalian body. During prolonged (40-day) streptozotocin-diabetes in the rat there is a marked increase in both the size and the phosphate-activated glutaminase activity of the small intestine. Despite this increased capacity, intestinal glutamine utilization ceases in diabetic rats. Mean arterial glutamine concentration fell by more than 50% in diabetic rats, suggesting that substrate availability is responsible for the decrease in intestinal glutamine use. When arterial glutamine concentrations in diabetic rats were elevated by infusion of glutamine solutions, glutamine uptake across the portal-drained viscera was observed. The effect of other respiratory fuels on intestinal glutamine metabolism was examined. Infusions of ketone bodies did not affect glutamine use by the portal-drained viscera of non-diabetic rats. Prolonged diabetes had no effect on the activity of 3-oxoacid CoA-transferase in the small intestine or on the rate of ketone-body utilization in isolated enterocytes. Glutamine (2 mM) utilization was decreased in enterocytes isolated from diabetic rats as compared with those from control animals. However, glutaminase activity in homogenates of enterocytes was unchanged by diabetes. In enterocytes isolated from diabetic rats the addition of ketone bodies or octanoate decreased glutamine use. It is proposed that during prolonged diabetes ketone bodies, and possibly fatty acids, replace glutamine as the major respiratory fuel of the small intestine.  相似文献   

3.
Summary We describe the kinetic modifications to mitochondrial-membrane-bound phosphate-dependent glutaminase in various types of rat tissue brought about by acute metabolic acidosis. The activity response of phosphate-dependent glutaminase to glutamine was sigmoidal, showing positive co-operativity, the Hill coefficients always being higher than 2. The enzyme from acidotic rats showed increased activity at subsaturating concentrations of glutamine in kidney tubules, as might be expected, but not in brain, intestine or liver tissues. Nevertheless, when brain and intestine from control rats were incubated in plasma from acutely acidotic rats enzyme activity increased at 1 mM glutamine in the same way as in kidney cortex. The enzyme from liver tissue remained unaltered. S0.5 and nH values decreased significantly in kidney tubules, enterocytes and brain slices preincubated in plasma from acidotic rats. The sigmoidal curves of phosphate-dependent glutaminase shifted to the left without any significant changes in Vmax. The similar response of phosphate-dependent glutaminase to acute acidosis in the kidney, brain and intestine confirms the fact that enzymes from these tissues are kinetically identical and reaffirms the presence of an ammoniagenic factor in plasma, either produced or concentrated in the kidneys of rats with acute acidosis.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - EDTA NN-1,2-Ethane-diylbis [N-(carboxymethyl)glycyne] - Tris 2-amino-2-hydroxymethyl-1,3-propanediol - PDG phosphate dependent glutaminase Publication No. 145 from Drogas, Tóxicos Ambientales y Metabolismo Celular Research Group. Department of Biochemistry and Molecular Biology, University of Granada, Spain  相似文献   

4.
Regulation of the mitochondrial phosphate-dependent glutaminase activity is an essential component in the control of renal ammoniagenesis. Alterations in acid-base balance significantly affect the amount of the glutaminase that is present in rat kidney, but not in brain or small intestine. The relative rates of glutaminase synthesis were determined by comparing the amount of [35S]methionine incorporated into specific immunoprecipitates with that incorporated into total protein. In a normal animal, the rate of glutaminase synthesis constitutes 0.04% of the total protein synthesis. After 7 days of metabolic acidosis, the renal glutaminase activity is increased to a value that is 5-fold greater than normal. During onset of acidosis, the relative rate of synthesis increases more rapidly than the appearance of increased glutaminase activity. The increased rate of synthesis reaches a plateau within 5 days at a value that is 5.3-fold greater than normal. Recovery from chronic acidosis causes a rapid decrease in the relative rate of glutaminase synthesis, but a gradual decrease in glutaminase activity. The former returns to normal within 2 days, whereas the latter requires 11 days. The apparent half-time for glutaminase degradation was found to be 5.1 days and 4.7 days for normal and acidotic rats respectively. These results indicate that the increase in renal glutaminase activity associated with metabolic acidosis is due primarily to an increase in its rate of synthesis. From the decrease in activity that occurs upon recovery from acidosis, the true half-life for the glutaminase was estimated to be 3 days.  相似文献   

5.
The aim of this study was to examine the effect of glutamine-enriched parenteral nutrition on the activity, expression and distribution of glutaminase mRNA within the small intestine of rats. Central venous lines were inserted into 30 male Wistar rats before they were fed for 6 days with either: (a) conventional parenteral nutrition, (b) 2.5% glutamine-enriched parenteral nutrition, or (c) rat food ad libitum. Jejunal glutaminase activity per milligram of dry matter was greatest in the animals fed rat food (0.94+/-0.29), intermediate in the glutamine supplemented rats (0.69+/-0.19) and least in the rats nourished with conventional parenteral nutrition (0.55+/-0.24) (P<0.05). The data for glutaminase expression exhibited a similar trend (P<0.05). In situ hybridisation analysis confirmed that glutaminase is expressed in the mucosa along the whole length of the small intestine. It was concluded that provision of glutamine alters the activity and expression of glutaminase in intestinal enterocytes. The results suggest that glutamine increases glutaminase activity by promoting the accumulation of intestinal glutaminase mRNA.  相似文献   

6.
Effect of diabetic ketosis on jejunal glutaminase   总被引:2,自引:0,他引:2  
The intestine is capable of shifting its major fuel source from glutamine in the fed animal to ketone bodies in the fasted animal. Glutaminase (EC 3.5.1.2), the entry enzyme of glutamine oxidation, was examined for its function as a determinant in the utilization of jejunal fuel during diabetes and fasting. Male Sprague-Dawley rats were made ketotic to varied degrees by either fasting or the induction of diabetes with graded doses of streptozotocin (SZ). Specific activity of glutaminase was decreased in the diabetic animals to 64% (p less than 0.05) of controls in the group receiving 110 mg/kg SZ and 82% of controls in the group receiving 65 mg/kg SZ and to 78% (p less than 0.05) of controls in the fasted animals. The activity of glutaminase in the small intestine was negatively correlated to the concentration of beta-hydroxybutyrate in the plasma (r = -0.97, p less than 0.025) and jejunum (r = -0.92, p less than 0.05) for the four groups of animals. Specific activity of glutaminase was decreased in all cell types isolated along the villus-crypt axis of the small intestine from diabetic and fasted rats compared with control rats. The quantity of glutaminase-protein was determined by a dot immunobinding assay using an antibody to purified glutaminase. The activity of glutaminase relative to immunoreactive glutaminase-protein was significantly decreased (p less than 0.05) to 53% of control values in the 110 mg/kg SZ group, 77% in the 65 mg/kg SZ group, and 70% in the fasted group. These data indicate that an inactivation of glutaminase-protein may play a role in the ability of the intestine to shift its fuel source from glutamine to ketone bodies during diabetes and fasting.  相似文献   

7.
8.
The metabolism of glutamine, the main respiratory fuel of enterocytes, is governed by the activity of glutaminase and glutamine synthetase. Because starvation induces intestinal atrophy, it might alter the rate of intestinal glutamine utilization. This study examined the effect of starvation on the activity, level of mRNA, and distribution of mRNA of glutaminase and glutamine synthetase in the rat intestine. Rats were randomized into groups and were either: (1) fed for 2 days with rat food ad libitum or (2) starved for 2 days. Standardized segments of jejunum and ileum were removed for the estimation of enzyme activity, level of mRNA, and in situ hybridization analysis. The jejunum of the fed rats had a greater activity of both enzymes per centimeter of intestine (P < 0.01), a greater glutaminase specific activity (1.97 +/- 0.45 vs. 1.09 +/- 0.34 micromol/hr/mg protein, P < 0.01), and a lower level of glutaminase and glutamine synthetase mRNA. The ileum of the fed rats had a greater activity of glutamine synthetase per centimeter of intestine (162.9 +/- 50.6 vs. 91.0 +/- 23.1 nmol/hr/cm bowel, P < 0.01), a lower level of glutaminase mRNA, and a greater level of glutamine synthetase mRNA. In situ hybridization analysis showed that starvation does not alter the distribution of glutaminase and glutamine synthetase mRNA in the intestinal mucosa. This study confirms that starvation decreases the total intestinal activity per centimeter of both glutaminase and glutamine synthetase. More importantly, the results indicate that the intestine adapts to starvation by accumulating glutaminase mRNA. This process prepares the intestine for a restoration of intake.  相似文献   

9.
Rats develop metabolic acidosis acutely after exercise by swimming. Renal cortical slices from exercised rats show an increase in both ammoniagenesis and gluconeogenesis from glutamine. In addition, plasma from the exercised rats also stimulates ammoniagenesis in renal cortical slices from normal rats. In exercised rats renal phosphate dependent glutaminase shows a 200% activation when the enzyme activity is measured at subsaturating concentration of glutamine (1 mM) while only an increase of 12% in Vmax is observed. When kidney slices from normal rats are incubated in plasma from exercised rats an activation of phosphate dependent glutaminase is obtained with a 1.0 mM (100%) but not with 20 mM glutamine as substrate. This activation of phosphate dependent glutaminase at subsaturating levels of substrate may indicate a conformational change in PDG effected by a factor present in the plasma of exercised acidotic rats.  相似文献   

10.
The role of hepatic glutaminase flux in regulating plasma glutamine homeostasis was studied in the intact rat. Interorgan glutamine flow during chronic metabolic acidosis was away from the splanchnic bed and to the kidneys. Hindquarter and hepatic glutamine release were the major sources of glutamine removed by the kidneys. Interorgan glutamate flow was from the liver to the hindquarters and kidneys. Chronic metabolic acidosis reduced arterial glutamine concentration 30%. Acute respiratory acidosis (pH 7.12 +/- 0.02) returned arterial glutamine concentration to normal values, increasing and decreasing hepatic glutamine and glutamate release respectively; renal and gut glutamine removal rates were not decreased. Hepatic unidirectional glutamine utilization measured isotopically was decreased 51% by acute acidosis; unidirectional glutamine production was unchanged. The results are consistent with the proposed role of ammonia-activated hepatic glutaminase in the regulation of glutamine homeostasis during acute acidosis.  相似文献   

11.
Phosphate-activated glutaminase is found in mammalian small intestine, brain, and kidney, but not in liver. The enzyme initiates the catabolism of glutamine as the principal respiratory fuel in the small intestine, may synthesize the neurotransmitter glutamate in the brain, and functions in the kidney to help maintain systemic pH homeostasis. Interleukin-9 (IL9) is a relatively new cytokine that supports the growth of helper T-cell clones, mast cells, and megakaryoblastic leukemia cells. cDNA clones have recently been obtained for each of these genes. The human loci for phosphate-activated glutaminase (GLS) and IL9 have previously been mapped to chromosomes 2 and 5, respectively, by analysis of somatic cell hybrid DNAs. By using chromosomal in situ hybridization, we have regionally mapped GLS to 2q32----q34 and IL9 to 5q31----q35.  相似文献   

12.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

13.
14.
The following points summarize these findings: (i) there are 2 glutamine utilizing enzyme systems in the rat kidney; (ii) the cytoplasmic glutamyltransferase system hydrolyzes either glutamine isomer while the mitochondrial localized glutaminase 1 is specific for the L-isomer; (iii) the cytoplasmic pathway contributes 70% of the total renal ammonia production in the normal kidney; (iv) chronic metabolic acidosis results in a 20-fold activation of the mitochondrial glutaminase 1 pathway.  相似文献   

15.
1. In short- and long-term diabetic rats there is a marked increase in size of both the small intestine and colon, which was accompanied by marked decreases (P less than 0.001) and increases (P less than 0.001) in the arterial concentrations of glutamine and ketone bodies respectively. 2. Portal-drained viscera blood flow increased by approx. 14-37% when expressed as ml/100 g body wt., but was approximately unchanged when expressed as ml/g of small intestine of diabetic rats. 3. Arteriovenous-difference measurements for ketone bodies across the gut were markedly increased in diabetic rats, and the gut extracted ketone bodies at approx. 7 and 60 nmol/min per g of small intestine in control and 42-day-diabetic rats respectively. 4. Glutamine was extracted by the gut of control rats at a rate of 49 nmol/min per g of small intestine, which was diminished by 45, 76 and 86% in 7-, 21- and 42-day-diabetic rats respectively. 5. Colonocytes isolated from 7- or 42-day-diabetic rats showed increased and decreased rates of ketone-body and glutamine metabolism respectively, whereas enterocytes of the same animals showed no apparent differences in the rates of acetoacetate utilization as compared with control animals. 6. Prolonged diabetes had no effects on the maximal activities of either glutaminase or ketone-body-utilizing enzymes of colonic tissue preparations. 7. It is concluded that, although the epithelial cells of the small intestine and the colon during streptozotocin-induced diabetes exhibit decreased rates of metabolism of glutamine, such decreases were partially compensated for by enhanced ketone-body utilization by the gut mucosa of diabetic rats.  相似文献   

16.
1. Glutaminase and glutamine synthetase are simultaneously active in the intact liver, resulting in an energy consuming cycling of glutamine at a rate up to 0.2 mumol per g per min. 2. An increase in portal glutamine concentration was followed by an increased flux through glutaminase, but flux through glutamine synthetase remained unchanged. Glutaminase flux was also increased by ammonium ions or glucagon; these effects were additive. 3. Glutamine synthetase flux was increased by ammonium ions, but this activation was partly overcome by increasing portal glutamine concentrations. Glutamine synthetase flux was slightly increased by glucagon at portal glutamine concentrations of about 0.2-0.3 mM, but was strongly inhibited above 0.6 mMs. 4. During experimental metabolic acidosis there was an increased net release of glutamine by the liver, being due to opposing changes of flux through glutaminase and glutamine synthetase. Conversely, an increased glutamine uptake by the liver during metabolic alkalosis was observed due to an inhibition of glutamine synthetase and an activation of glutaminase. However, the two enzyme activities respond differently depending on whether glucagon or ammonium ions are present.  相似文献   

17.
Experiments were carried out on rats to evaluate the possible regulatory roles of renal glutaminase activity, mitochondrial permeability to glutamine, phosphoenolpyruvate carboxykinase activity and systemic acid–base changes in the control of renal ammonia (NH3 plus NH4+) production. Acidosis was induced by drinking NH4Cl solution ad libitum. A pronounced metabolic acidosis without respiratory compensation [pH=7.25; HCO3=16.9mequiv./litre; pCO2=40.7mmHg (5.41kPa)] was evident for the first 2 days, but thereafter acid–base status returned towards normal. This improvement in acid–base status was accompanied by the attainment of maximal rates of ammonia excretion (onset phase) after about 2 days. A steady rate of ammonia excretion was then maintained (plateau phase) until the rats were supplied with tap water in place of the NH4Cl solution, whereupon pCO2 and HCO3 became elevated [55.4mmHg (7.37kPa) and 35.5mequiv./litre] and renal ammonia excretion returned to control values within 1 day (recovery phase). Renal arteriovenous differences for glutamine always paralleled rates of ammonia excretion. Phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase activities and the rate of glutamine metabolism (NH3 production and O2 consumption) by isolated kidney mitochondria all increased during the onset phase. The increases in glutaminase and in mitochondrial metabolism continued into the plateau phase, whereas the increase in the carboxykinase reached a plateau at the same time as did ammonia excretion. During the recovery phase a rapid decrease in carboxykinase activity accompanied the decrease in ammonia excretion, whereas glutaminase and mitochondrial glutamine metabolism in vitro remained elevated. The metabolism of glutamine by kidney-cortex slices (ammonia, glutamate and glucose production) paralleled the metabolism of glutamine in vivo during recovery, i.e. it returned to control values. The results indicate that the adaptations in mitochondrial glutamine metabolism must be regulated by extra-mitochondrial factors, since glutamine metabolism in vivo and in slices returns to control values during recovery, whereas the mitochondrial metabolism of glutamine remains elevated.  相似文献   

18.
Phosphate-independent glutaminase can be quantitatively solubilized from a microsomal preparation of rat kidney by treatment with papain. Subsequent gel filtration and chromatography on quaternary aminoethyl (QAE)-Sephadex and hydroxylapatite yield a 200-fold purified preparation of this glutaminase. The purified enzyme also hydrolyzes gamma-glutamylhydroxamate and exhibits substrate inhibition at high concentrations of either glutamine or gamma-glutamyhydroxamate, which is partially relieved by increasing concentrations of maleate. Rat kidney phosphate-independent glutaminase reaction is catalyzed by the same enzyme which catalyzes the gamma-glutamyltranspeptidase reaction. The ratio of glutaminase to transpeptidase activities remained constant throughout a 200-fold purification of this enzyme. The observation that the phosphate0independent glutaminase and gamma-glutamyltranspeptidase activities exhibit coincident mobilities during electrophoresis, both before and after extensive treatment with neuraminidase, strongly suggests that both reactions are catalyzed by the same enzyme. This conclusion is strengthened by the observation that maleate and various amino acids have reciprocal effects on the two activities. Maleate increases glutaminase activity and blocks transpeptidation, whereas amino acids activate the transpeptidase but inhibit glutaminase activity. In contrast, the addition of both maleate and alanine resulted in a strong inhibition of both activities. Both activities exhibit a similar distribution in the various regions of the kidney. Recovery of maximal activities in the outer stripe region of the medulla is consistent with previous quantitative microanalysis which indicated that this glutaminase activity is localized primarily in the proximal straight tubule cells. The glutaminase and transpeptidase activities have different pH optima. Examination of the product specificity suggests that decreasing pH also promotes glutaminase activity and that below pH 6.0, this enzyme functions strictly as a glutaminase. Because of the localization of this activity on the brush border membrane, these resuts are consistent with the possibility that the physiological conditions induced by metabolic acidosis could convert this enzyme from a broad specificity transpeptidase to a glutaminase. Therefore, this enzyme could contribute to the increased renal synthesis of ammonia from glutamine which is observed during metabolic acidosis.  相似文献   

19.
The activities of two phosphate-dependent glutaminase reactions characteristic of adult rat liver and kidney were determined in these organs from 2(1/2) days before to 7 days after birth and compared with the activities in the adult tissues. In the kidney, before and after birth, only the kidney type of activity was detected, and it increased in concentration in parallel with the steady growth of that organ throughout the period examined. In the liver, however, the kidney type of activity was the only one present 2(1/2) days before birth, and its concentration decreased to barely significant values by the end of the first week after birth. In contrast, the liver type of activity appeared only just before birth and increased to 60% of adult values over the next 4 days. There was no obvious relation between these changes in glutaminase type and changes in liver weight, protein content and total cell number that occurred during this time. But there was a very close correlation between the fall in kidney-type activity and the estimated fall in haematopoietic-cell number in liver.  相似文献   

20.
1. Slices of duodenum and jejunum produce ammonia from glutamine in vitro. 2. Ammoniagenesis does not increase in response to acidosis or potassium deficiency, two conditions known to cause enhanced ammoniagenesis in the kidney. 3. Gut contains glutaminase 1 as well as gamma-glutamyl transpeptidase. 4. These enzymes do not show any increase during starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号