首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ma X  Li YF  Gao Q  Ye ZG  Lu XJ  Wang HP  Jiang HD  Bruce IC  Xia Q 《Life sciences》2008,83(3-4):110-117
This study was designed (i) to test the hypothesis that the endothelium-derived hyperpolarizing factor (EDHF) component of ACh-induced vasorelaxation and hyperpolarization of smooth muscle cells (SMCs) are impaired following exposure to superoxide anion, and (ii) to further investigate whether luteolin and apigenin induce vasoprotection at the vasoactive concentrations in rat mesenteric artery. Rat mesenteric arterial rings were isolated for isometric force recording and electrophysiological studies. Perfusion pressure of mesenteric arterial bed was measured and visualization of superoxide production was detected with fluorescent dye. 300 microM pyrogallol significantly decreased the relaxation and hyperpolarization to ACh. Luteolin and apigenin both induced vasoprotection against loss of the EDHF component of ACh-induced relaxation and attenuated the impairment of hyperpolarization to ACh. Oxidative fluorescent microtopography showed that either luteolin or apigenin significantly reduced the superoxide levels. The results suggest that superoxide anion impairs ACh-induced relaxation and hyperpolarization of SMC in resistance arteries through the impairment of EDHF mediated responses. Luteolin and apigenin protect resistance arteries from injury, implying that they may be effective in therapy for vascular diseases associated with oxidative stress.  相似文献   

2.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

3.
In response to various neurohumoral substances endothelial cells release nitric oxide (NO), prostacyclin and produce hyperpolarization of the underlying vascular smooth muscle cells, possibly by releasing another factor termed endothelium-derived hyperpolarizing factor (EDHF). EDHF-mediated responses are sensitive to the combination of two toxins, charybdotoxin plus apamin, but do not involve ATP-sensitive or large conductance calcium-activated potassium channels. As hyperpolarization of the endothelial cells is required in order to observe endothelium-dependent hyperpolarization, and electrical coupling through myo-endothelial gap junctions may explain the phenomenon. An alternative explanation is that the hyperpolarization of the endothelial cells causes an efflux of potassium that in turn activates the inwardly rectifying potassium conductance and the Na+/K+ pump of the smooth muscle cells. Endothelial cells produce metabolites of the cytochrome P450-monooxygenase that activate BKCa, and induce hyperpolarization of coronary arterial smooth muscle cells. The elucidation of the mechanism underlying endothelium-dependent hyperpolarization and the discovery of specific inhibitors of the phenomenon are prerequisite for the understanding of the physiological role of this alternative endothelial pathway involved in the control of vascular tone in health and disease.  相似文献   

4.
The vascular endothelium plays a critical role in vascular health by controlling arterial diameter, regulating local cell growth, and protecting blood vessels from the deleterious consequences of platelet aggregation and activation of inflammatory responses. Circulating chemical mediators and physical forces act directly on the endothelium to release diffusible relaxing factors, such as nitric oxide (NO), and to elicit hyperpolarization of the endothelial cell membrane potential, which can spread to the surrounding smooth muscle cells via gap junctions. Endothelial hyperpolarization, mediated by activation of calcium-activated potassium (K(Ca)) channels, has generally been regarded as a distinct pathway for smooth muscle relaxation. However, recent evidence supports a role for endothelial K(Ca) channels in production of endothelium-derived NO, and indicates that pharmacological activation of these channels can enhance NO-mediated responses. In this review we summarize the current data on the functional role of endothelial K(Ca) channels in regulating NO-mediated changes in arterial diameter and NO production, and explore the tempting possibility that these channels may represent a novel avenue for therapeutic intervention in conditions associated with reduced NO availability such as hypertension, hypercholesterolemia, smoking, and diabetes mellitus.  相似文献   

5.
Tare  M.  Coleman  H. A.  Parkington  H. C. 《Neurophysiology》2003,35(3-4):256-261
Amongst its wide repertoire of functions, the vascular endothelium plays a pivotal role in the regulation of vascular smooth muscle tone and ultimately tissue perfusion. In healthy vessels, the endothelium exerts a vasodilator influence on the underlying smooth muscle cells. In diabetes mellitus, endothelium-dependent vasodilation is impaired in various vascular beds and may contribute to the increased vascular tone and reduced tissue perfusion, which are features of this disease. There are regional variations in the extent of endothelial vasodilator dysfunction in diabetes, and the basis for this variation has yet to be resolved. The complement of vasodilators involved in endothelium-dependent relaxation varies in different vascular beds. In larger arteries and conduit vessels, the role of nitric oxide (NO) has been the focus of human and animal studies on diabetes. Small arteries and arterioles are important in the local regulation of tissue perfusion, and in many of these, another endothelial vasodilator, endothelium-derived hyperpolarizing factor (EDHF), plays an increasingly prominent role in overall endothelium-dependent relaxation. Surprisingly few studies have explored the influence of diabetes on EDHF; however, there is emerging evidence from a diverse range of vascular beds that the actions of EDHF are seriously compromised in diabetes. Vascular disease remains the leading cause of morbidity and mortality associated with diabetes mellitus. A better understanding of the regional differences and mechanisms involved in endothelial function and dysfunction in small arteries may reveal new strategies to aid in the prevention and/or therapeutic management of the vascular complications of diabetes mellitus.  相似文献   

6.
Although the endothelium co-generates both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), the relative contribution from each vasodilator is not clear. In studies where the endothelium is stimulated acutely, EDHF responses predominate in small arteries. However, the temporal relationship between endothelial-derived NO and EDHF over more prolonged periods is unclear but of major physiological importance. Here we have used a classical pharmacological approach to show that EDHF is released transiently compared with NO. Acetylcholine (3 x 10(-6) mol/l) dilated second- and/or third-order mesenteric arteries for prolonged periods of up to 1 h, an effect that was reversed fully and immediately by the subsequent addition of L-NAME (10(-3) mol/l) but not TRAM-34 (10(-6) mol/l) plus apamin (5 x 10(-7) mol/l). When vessels were pretreated with L-NAME, acetylcholine induced relatively transient dilator responses (declining over approximately 5 min), and vessels were sensitive to TRAM-34 plus apamin. When measured in parallel, the dilator effects of acetylcholine outlasted the smooth muscle hyperpolarization. However, in the presence of L-NAME, vasodilatation and hyperpolarization followed an identical time course. In vessels from NOSIII(-/-) mice, acetylcholine induced small but detectable dilator responses that were transient in duration and blocked by TRAM-34 plus apamin. EDHF responses in these mouse arteries were inhibited by an intracellular calcium blocker, TMB-8, and the phospholipase A(2) inhibitor AACOCF(3), suggesting a role for lipid metabolites. These data show for the first time that EDHF is released transiently, whereas endothelial-derived NO is released in a sustained manner.  相似文献   

7.
Endothelium-derived hyperpolarizing factor (EDHF)-attributed hyperpolarizations and relaxations were recorded simultaneously from submucosal arterioles of guinea pigs with the use of intracellular microelectrodes and a video-based system, respectively. Membrane currents were recorded from electrically short segments of arterioles under single-electrode voltage clamp. Substance P evoked an outward current with a current-voltage relationship that was well described by the Goldman-Hodgkin-Katz equation for a K+ current, consistent with the involvement of intermediate- and small-conductance Ca2+-activated K+ channels. 1-Ethyl-2-benzimidazolinone relaxed the arterioles and evoked hyperpolarizations that were blocked by charybdotoxin, but not by iberiotoxin. Application of K+ induced depolarization under conditions in which EDHF evoked hyperpolarization. The Ba2+-sensitive component of the K+-induced current was inwardly rectifying, in contrast to the outwardly rectifying current evoked by substance P. EDHF-attributed hyperpolarizations in dye-identified smooth muscle cells were indistinguishable from those recorded from dye-identified endothelial cells in the same arterioles. These results provide evidence that EDHF is not K+ but may involve electrotonic spread of hyperpolarization from the endothelial cells to the smooth muscle cells.  相似文献   

8.
《Life sciences》1997,60(7):PL91-PL97
Palytoxin induced increases in cytosolic Ca2+ and tension, which were dependent on external Ca2+, and depolarized the membrane in endothelium-denuded porcine coronary arteries. When the endothelium was present, however, these effects were greatly inhibited, suggesting that some factors from endothelium inhibited the palytoxin-actions. Pretreatment with 100 μM Nω-nitro-L-arginine partially reversed the inhibitory effect of endothelium on the Ca2+ movement and the contraction but not that on the depolarization. Pretreatment with 10 μM indomethacin did not affect the inhibition. These results suggest that palytoxin released both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) from the endothelium, both of which counteracted the actions of palytoxin on smooth muscle cells. It is thought that the palytoxin-induced depolarization was attenuated by hyperpolarization due to EDHF.  相似文献   

9.
The mechanisms underlying endothelium-dependent hyperpolarizing factor (EDHF) in the middle cerebral artery (MCA) remain largely unresolved. In particular, very little is known regarding the way in which the signal is transmitted from endothelium to smooth muscle. The present study tested the hypothesis that direct communication via myoendothelial gap junctions contributes to the EDHF response in the male rat MCA. EDHF-mediated dilations were elicited in rat MCAs by luminal application of ATP or UTP in the presence of Nomega-nitro-L-arginine methyl ester and indomethacin. Maximum dilation to luminal ATP (10(-4) M) was reduced significantly after incubation with a gap peptide cocktail (9 +/- 4%, n = 6) compared with a scrambled gap peptide cocktail (99 +/- 1%, n = 6, P < 0.05). A gap peptide cocktail had no effect on amplitude of endothelial cell hyperpolarization in response to 3 x 10(-5) M UTP (22 +/- 3 vs. 22 +/- 1 mV, n = 4), whereas smooth muscle cell hyperpolarization was significantly attenuated (17 +/- 1 vs. 6 +/- 1 mV, n = 4, P = 0.004). Connexin (Cx) 37 was localized to smooth muscle and Cx43 to endothelium, whereas Cx40 was found in endothelium and smooth muscle. Electron microscopy revealed the existence of frequent myoendothelial junctions. The total number of myoendothelial junctions per 5 microm of MCA sectioned was 2.5 +/- 0.5. Our results suggest that myoendothelial communication contributes to smooth muscle cell hyperpolarization and EDHF dilation in male rat MCA.  相似文献   

10.
Vascular endothelial cells play a fundamental role in the control of vascular tone, and therefore in the control of local blood flow, by releasing various contracting (endothelin, prostaglandins) and relaxing (prostacycline, NO) factors. An additional mechanism involving the hyperpolarization of the vascular smooth muscle cells is observed mainly in the coronary vascular bed and in the periphery. This phenomenon was attributed to an elusive endothelial factor called endothelium-derived hyperpolarizing factor (EDHF). This mechanism is now better understood. It involves first an increase in the endothelial intracellular concentration of calcium, the activation of endothelial potassium channels and the resulting hyperpolarization of the endothelial cells. The hyperpolarization of the endothelial cells is transmitted to the smooth muscle cells by different pathways. This hyperpolarization propagates along the vessels not only via the smooth muscle cells but also via the endothelial cells. Therefore, the endothelial layer can also be considered as a conducting tissue. The discovery of specific inhibitors of the endothelial cell hyperpolarization allows the assessment of the contribution of EDHF-mediated responses in the control of vascular tone.  相似文献   

11.
The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD) patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS), prerequisites for myoendothelial gap junctions (MEGJ), and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF) to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA) suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.  相似文献   

12.
Leukemia inhibitory factor (LIF) is a cytokine, which inhibits angiogenesis and decreases endothelial cell proliferation and migration, suggesting that LIF may modulate vascular tone. In this study, we examined the effects of LIF on the tone of rat arteries. The isometric tension of ring preparations from rat superior mesenteric arteries was continuously measured. LIF relaxed the mesenteric arteries in a dose-dependent manner, when the arterial rings were precontracted with phenylephrine. The relaxation was totally inhibited by mechanical removal of endothelium. N(G)-nitro-L-arginine methyl ester did not affect the relaxation by LIF. Ca(2+)-dependent K channel (KCa) blockers, apamin with charybdotoxin, inhibited the relaxation by LIF. Catalase, an enzyme which scavenges hydrogen peroxide, also inhibited the relaxation by LIF. Endothelium-derived hyperpolarizing factor relaxes smooth muscle cells and the effect is blocked by KCa and catalase. Our results suggest that LIF regulates vascular tone through the effect of this factor.  相似文献   

13.
Gap junctions interconnect vascular cells homocellularly, thereby allowing the spread of signals along the vessel wall, which serve to coordinate vessel behavior. In addition, gap junctions provide heterocellular coupling between endothelial and vascular smooth muscle cells, creating so-called myoendothelial gap junctions (MEGJs). Endothelial cells control vascular tone by the release of factors that relax vascular smooth muscle. Endothelial factors include nitric oxide, prostaglandins, and an additional dilator principle, which acts by smooth muscle hyperpolarization and is therefore named endothelium-derived hyperpolarizing factor (EDHF). Whether this principle indeed relies on a factor or on intact MEGJs, which allow direct current transfer from endothelial to smooth muscle cells, has recently been questioned. Careful studies revealed the presence of vascular cell projections that make contact through the internal elastic lamina, exhibit the typical GJ morphology, and express connexins in many vessels. The functional study of the physiological role of MEGJs is confined by the difficulty of selectively blocking these channels. However, in different vessels studied in vitro, the dilation related to EDHF was sensitive to experimental interventions that block MEGJs more or less specifically. Additionally, bidirectional electrical coupling between endothelial and smooth muscle cells was demonstrated in isolated small vessels. In marked contrast, similar approaches used in conjunction with intravital microscopy, which allows examination of vascular behavior in the intact animal, did not verify electrical or dye-coupling in different models investigated. The discrepancy between in vitro and in vivo investigations may be due to size and origin of the vessels studied using these distinct experimental approaches. Additionally, MEGJ coupling is possibly tightly controlled in vivo by yet unknown mechanisms that prevent unrestricted direct signaling between endothelial and smooth muscle cells.  相似文献   

14.
Ca+ -activated K+ -channels (KCa) regulate vasomotor tone via smooth muscle hyperpolarization and relaxation. The relative contribution of the endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation differs depending on vessel type and size. It is unknown whether these KCa channels are differentially distributed along the same vascular bed and hence have different roles in mediating the EDHF response. We therefore assessed the role of small- (SKCa), intermediate- (IKCa), and large-conductance (BKCa) channels in mediating acetylcholine-induced relaxations in both first- and fourth-order side branches of the rat superior mesenteric artery (MA1 and MA4, respectively). Two-millimeter segments of each MA were mounted in the wire myograph, incubated with Nomega-nitro-L-arginine methyl ester (L-NAME, 100 micromol/l) and indomethacin (10 micromol/l), and precontracted with phenylephrine (10 micromol/l). Cumulative concentration-response curves to ACh (0.001-10 micromol/l) were performed in the absence or presence of selective KCa channel antagonists. Apamin almost completely abolished these relaxations in MA4 but only partially blocked relaxations in MA1. The selective IKCa channel blocker 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) caused a significantly greater inhibition of the ACh-induced relaxation in MA4 compared with MA1. Iberiotoxin had no inhibitory effect in MA4 but blunted relaxation in MA1. Relative mRNA expression levels of SKCa (rSK1, rSK3, and rSK4 = rIK1) were significantly higher in MA4 compared with MA1. BKCa (rBKalpha1 and rBKbeta1) genes were similar in both MA1 and MA4. Our data demonstrate regional heterogeneity in SKCa and IKCa function and gene expression and stress the importance of these channels in smaller resistance-sized arteries, where the role of EDHF is more pronounced.  相似文献   

15.
Griffith TM 《Biorheology》2002,39(3-4):307-318
Local haemodynamic forces acting on the endothelium modulate vascular tone through mechanisms that normalize intimal shear stress. This flow-dependent diameter response contributes to the optimization of circulatory function and is mediated via shear stress-induced release of NO, vasodilator prostanoids and a putative endothelium-derived hyperpolarizing factor or EDHF. There is growing evidence that NO/prostanoid independent relaxations involve direct heterocellular signalling between endothelial and smooth muscle cells via gap junctions.  相似文献   

16.
Endothelium-derived hyperpolarizing factor (EDHF) is released in response to agonists such as ACh and bradykinin and regulates vascular smooth muscle tone. Several studies have indicated that ouabain blocks agonist-induced, endothelium-dependent hyperpolarization of smooth muscle. We have demonstrated that epoxyeicosatrienoic acids (EETs), cytochrome P-450 metabolites of arachidonic acid, function as EDHFs. To further test the hypothesis that EETs represent EDHFs, we have examined the effects of ouabain on the electrical and mechanical effects of 14,15- and 11,12-EET in bovine coronary arteries. These arteries are relaxed in a concentration-dependent manner to 14,15- and 11,12-EET (EC(50) = 6 x 10(-7) M), bradykinin (EC(50) = 1 x 10(-9) M), sodium nitroprusside (SNP; EC(50) = 2 x 10(-7) M), and bimakalim (BMK; EC(50) = 1 x 10(-7) M). 11,12-EET-induced relaxations were identical in vessels with and without an endothelium. Potassium chloride (1-15 x 10(-3) M) inhibited [(3)H]ouabain binding to smooth muscle cells but failed to relax the arteries. Ouabain (10(-5) to 10(-4) M) increased basal tone and inhibited the relaxations to bradykinin, 11,12-EET, and 14,15-EET, but not to SNP or BMK. Barium (3 x 10(-5) M) did not alter EET-induced relaxations and ouabain plus barium was similar to ouabain alone. Resting membrane potential (E(m)) of isolated smooth muscle cells was -50.2 +/- 0.5 mV. Ouabain (3 x 10(-5) and 1 x 10(-4) M) decreased E(m) (-48.4 +/- 0.2 mV), whereas 11,12-EET (10(-7) M) increased E(m) (-59.2 +/- 2.2 mV). Ouabain inhibited the 11,12-EET-induced increase in E(m). In cell-attached patch clamp studies, 11,12-EET significantly increased the open-state probability (NP(o)) of a calcium-activated potassium channel compared with control cells (0.26 +/- 0.06 vs. 0.02 +/- 0.01). Ouabain did not change NP(o) but blocked the 14,15-EET-induced increase in NP(o). These results indicate that: 1) EETs relax coronary arteries in an endothelium-independent manner, 2) unlike EETs, potassium chloride does not relax the coronary artery, and 3) ouabain inhibits bradykinin- and EET-induced relaxations as has been reported for EDHF. These findings provide further evidence that EETs are EDHFs.  相似文献   

17.
Bradykinin (BK) is a potent dilator of the perinatal pulmonary circulation. We investigated segmental differences in BK-induced dilation in newborn pig large conducting pulmonary artery and vein rings and in pressurized pulmonary resistance arteries (PRA). In conducting pulmonary arteries and veins, BK-induced relaxation is abolished by endothelial disruption and by inhibition of nitric oxide (NO) synthase with nitro-L-arginine (L-NA). In PRA, two-thirds of the dilation response is L-NA insensitive. Charybdotoxin plus apamin and depolarization with KCl abolish the L-NA-insensitive dilations, findings that implicate the release of endothelium-derived hyperpolarizing factor (EDHF). However, endothelium-disrupted PRA retain the ability to dilate to BK but not to ACh or A-23187. In endothelium-disrupted PRA, dilation was inhibited by charybdotoxin. Thus in PRA, BK elicits dilation by multiple and duplicative signaling pathways. Release of NO and EDHF contributes to the response in endothelium-intact PRA; in endothelium-disrupted PRA, dilation occurs by direct activation of vascular smooth muscle calcium-dependent potassium channels. Redundant signaling pathways mediating pulmonary dilation to BK may be required to assure a smooth transition to extrauterine life.  相似文献   

18.
Endothelium-derived hyperpolarising factor (EDHF) is an important regulator of vascular tone; however, its identity is still unclear. Several different molecules have been suggested, the most recent of which is the 22-amino acid peptide C-type natriuretic peptide (CNP). CNP induces hyperpolarisation and relaxation of rat mesenteric resistance artery vascular smooth muscle through activation of natriuretic peptide receptor subtype C (NPR-C) and the same potassium channels as EDHF. In addition, this peptide is released from endothelial cells of the perfused rat mesenteric bed in response to endothelium-dependent vasodilators. Thus, CNP is likely to play a vital role in regulation of vascular tone. In addition, since there is evidence that up-regulation of EDHF occurs where normal endothelium function has been compromised, modulation of this pathway represents a novel target for therapeutics in the treatment of inflammatory cardiovascular pathologies characterised by endothelial dysfunction.  相似文献   

19.
Elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells is proposed to be required for generation of vascular actions of endothelium-derived hyperpolarizing factor (EDHF). This study was designed to determine the endothelial Ca(2+) source that is important in development of EDHF-mediated vascular actions. In porcine coronary artery precontracted with U-46619, bradykinin (BK) and cyclopiazonic acid (CPA) caused endothelium-dependent relaxations in the presence of N(G)-nitro-L-arginine (L-NNA). The L-NNA-resistant relaxant responses were inhibited by high K(+), indicating an involvement of EDHF. In the presence of Ni(2+), which inhibits Ca(2+) influx through nonselective cation channels, the BK-induced EDHF relaxant response was greatly diminished and the CPA-induced response was abolished. BK and CPA elicited membrane hyperpolarization of smooth muscle cells of porcine coronary artery. Ni(2+) suppressed the hyperpolarizing responses in a manner analogous to removal of extracellular Ca(2+). EDHF-mediated relaxations and hyperpolarizations evoked by BK and CPA in porcine coronary artery showed a temporal correlation with the increases in [Ca(2+)](i) in porcine aortic endothelial cells. The extracellular Ca(2+)-dependent rises in [Ca(2+)](i) in endothelial cells stimulated with BK and CPA were completely blocked by Ni(2+). These results suggest that Ca(2+) influx into endothelial cells through nonselective cation channels plays a crucial role in the regulation of EDHF.  相似文献   

20.
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号