首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Kaposi's sarcoma-associated herpesvirus (KSHV), like all herpesviruses, encodes a protease (KSHV Pr), which is necessary for the viral lytic cycle. Herpesvirus proteases function as obligate dimers; however, each monomer has an intact, complete active site which does not interact directly with the other monomer across the dimer interface. Protein grafting of an interfacial KSHV Pr alpha-helix onto a small stable protein, avian pancreatic polypeptide, generated a helical 30-amino-acid peptide designed to disrupt the dimerization of KSHV Pr. The chimeric peptide was optimized through protein modeling of the KSHV Pr-peptide complex. Circular dichroism analysis and gel filtration chromatography revealed that the rationally designed peptide adopts a helical conformation and is capable of disrupting KSHV Pr dimerization, respectively. Additionally, the optimized peptide inhibits KSHV Pr activity by 50% at a approximately 200-fold molar excess of peptide to KSHV Pr, and the dissociation constant was estimated to be 300 microM. Mutagenesis of the interfacial residue M197 to a leucine resulted in an inhibitory concentration which was twofold higher for KSHV Pr M197L than for KSHV Pr, in agreement with the model that the dimer interface is involved in peptide binding. These results indicate that the dimer interface, as well as the active sites, of herpesvirus proteases is a viable target for inhibiting enzyme activity.  相似文献   

2.
The mechanism of herpesviral protease activation upon dimerization was studied using two independent spectroscopic assays augmented by directed mutagenesis. Spectroscopic changes, attributable to dimer interface conformational plasticity, were observed upon dimerization of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr). KSHV Pr's dissociation constant of 585 +/- 135 nM at 37 degrees C was measured by a concentration-dependent, 100-fold increase in specific activity to a value of 0.275 +/- 0.023 microM product min(-1) (microM enzyme)(-1). A 4 nm blue-shifted fluorescence emission spectrum and a 25% increase in ellipticity at 222 nm were detected by circular dichroism upon dimer association. This suggested enhanced hydrophobic packing within the dimer interface and/or core, as well as altered secondary structures. To better understand the structure-activity relationship between the monomer and the dimer, KSHV Pr molecules were engineered to remain monomeric via substitution of two separate residues within the dimer interface, L196 and M197. These mutants were proteolytically inactive while exhibiting the spectroscopic signature and thermal stability of wild type, dissociated monomers (T(M) = 75 degrees C). KSHV Pr conformational changes were found to be relevant in vivo, as the autoproteolytic inactivation of KSHV Pr at its dimer disruption site [Pray et al. (1999) J. Mol. Biol. 289, 197-203] was detected in viral particles from KSHV-infected cells. This characterization of structural plasticity suggests that the structure of the KSHV Pr monomer is stable and significantly different from its structure in the dimer. This structural uniqueness should be considered in the development of compounds targeting the dimer interface of KSHV Pr monomers.  相似文献   

3.
Distinct mechanisms have evolved to regulate the function of proteolytic enzymes. Viral proteases in particular have developed novel regulatory mechanisms, presumably due to their comparatively rapid life cycles and responses to constant evolutionary pressure. Herpesviruses are a family of human pathogens that require a viral protease with a concentration-dependent zymogen activation involving folding of two alpha-helices and activation of the catalytic machinery, which results in formation of infectious virions. Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) is unique among the herpesvirus proteases in possessing an autolysis site in the dimer interface, which removes the carboxyl-terminal 27 amino acids comprising an alpha-helix adjacent to the active site. Truncation results in the irreversible loss of dimerization and concomitant inactivation. We characterized the conformational and functional differences between the active dimer, inactive monomer, and inactive truncated protease to determine the different protease regulatory mechanisms that control the KSHV lytic cycle. Circular dichroism revealed a loss of 31% alpha-helicity upon dimer dissociation. Comparison of the full-length and truncated monomers by NMR showed differences in 21% of the protein structure, mainly located adjacent to the dimer interface, with little perturbation of the overall protein upon truncation. Fluorescence polarization and active site labeling, with a transition state mimetic, characterized the functional effects of these conformational changes. Substrate turnover is abolished in both the full-length and truncated monomers; however, substrate binding remained intact. Disruption of the helix 6 interaction with the active site oxyanion loop is therefore used in two independent regulatory mechanisms of proteolytic activity.  相似文献   

4.
All members of the human herpesvirus protease (HHV Pr) family are active as weakly associating dimers but inactive as monomers. A small-molecule allosteric inhibitor of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) traps the enzyme in an inactive monomeric state where the C-terminal helices are unfolded and the hydrophobic dimer interface is exposed. NMR titration studies demonstrate that the inhibitor binds to KSHV Pr monomers with low micromolar affinity. A 2.0-Å-resolution X-ray crystal structure of a C-terminal truncated KSHV Pr-inhibitor complex locates the binding pocket at the dimer interface and displays significant conformational perturbations at the active site, 15 Å from the allosteric site. NMR and CD data suggest that the small molecule inhibits human cytomegalovirus protease via a similar mechanism. As all HHV Prs are functionally and structurally homologous, the inhibitor represents a class of compounds that may be developed into broad-spectrum therapeutics that allosterically regulate enzymatic activity by disrupting protein-protein interactions.  相似文献   

5.
A genomic clone encoding the protease (Pr) and the assembly protein (AP) of Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) has been isolated and sequenced. As with other herpesviruses, the Pr and AP coding regions are present within a single long open reading frame. The mature KSHV Pr and AP polypeptides are predicted to contain 230 and 283 residues, respectively. The amino acid sequence of KSHV Pr has 56% identity with that of herpesvirus salmiri, the most similar virus by phylogenetic comparison. Pr is expressed in infected human cells as a late viral gene product, as suggested by RNA analysis of KSHV-infected BCBL-1 cells. Expression of the Pr domain in Escherichia coli yields an enzymatically active species, as determined by cleavage of synthetic peptide substrates, while an active-site mutant of this same domain yields minimal proteolytic activity. Sequence comparisons with human cytomegalovirus (HCMV) Pr permitted the identification of the catalytic residues, Ser114, His46, and His134, based on the known structure of the HCMV enzyme. The amino acid sequences of the release site of KSHV Pr (Tyr-Leu-Lys-Ala*Ser-Leu-Ile-Pro) and the maturation site (Arg-Leu-Glu-Ala*Ser-Ser-Arg-Ser) show that the extended substrate binding pocket differs from that of other members of the family. The conservation of amino acids known to be involved in the dimer interface region of HCMV Pr suggests that KSHV Pr assembles in a similar fashion. These features of the viral protease provide opportunities to develop specific inhibitors of its enzymatic activity.  相似文献   

6.
Dimerization inhibitors of HIV-1 protease   总被引:2,自引:0,他引:2  
By targeting the highly conserved antiparallel beta-sheet formed by the interdigitation of the N- and C-terminal strands of each monomer, dimerization inhibitors of HIV-1 protease may be useful to overcome the drug resistance observed with current active-site directed antiproteases. Sequestration of the monomer by the inhibitor (or disruption of the dimer interface) prevents the correct assembly of the inactive monomers to active enzyme. Strategies for the design of drugs targeting the dimer interface are described. Various dimerization inhibitors are reported including N- and C-terminal mimetics, lipopeptides and cross-linked interface peptides.  相似文献   

7.
An autolysis site of functional and structural significance has been mapped within the dimer interface of Kaposi's sarcoma-associated herpesvirus protease. Cleavage 27 residues from the C terminus of the 230 amino acid residue, 25 kDa protein was observed to cause a loss of dimerization and proteolytic activity, even though no active site moieties were lost. Gel-filtration chromatography and analytical ultracentrifugation were used to analyze the changes in oligomerization upon autolysis. The selective auto-disruption of this essential protein-protein interface by proteolytic cleavage resulted in a 60 % loss in mean residue ellipticity by circular dichroism as well as a 20 % weaker, 10 nm red-shifted intrinsic protein fluorescence emission spectrum. These apparent conformational changes induced a strict inhibition of enzymatic activity. An engineered substitution at the P1' position of this cleavage site attenuated autolysis by the enzyme and restored wild-type dimerization. In addition to retaining full proteolytic activity in a continuous fluorescence-based enzyme assay, this protease variant allowed the determination of the enzyme's dimerization dissociation constant of 1.7 (+/-0.9) microM. The structural perturbations observed in this enzyme may play a role in viral maturation, and offer general insight into the allosteric relationship between the dimer interface and active site of herpesviral proteases. The functional coupling between oligomerization and activity presented here may allow for a better understanding of such phenomena, and the design of an enzyme variant stabilized to autolysis should further the structural and mechanistic characterization of this viral protease.  相似文献   

8.
Biochemical studies indicate that dimerization is required for the catalytic activity of herpesvirus proteases, whereas structural studies show a complete active site in each monomer, away from the dimer interface. Here we report kinetic, biophysical and crystallographic characterizations of structure-based mutants in the dimer interface of human cytomegalovirus (HCMV) protease. Such mutations can produce a 1,700-fold reduction in the kcat while having minimal effects on the K(m). Dimer stability is not affected by these mutations, suggesting that dimerization itself is insufficient for activity. There are large changes in monomer conformation and dimer organization of the apo S225Y mutant enzyme. However, binding of an activated peptidomimetic inhibitor induced a conformation remarkably similar to the wild type protease. Our studies suggest that appropriate dimer formation may be required to indirectly stabilize the protease oxyanion hole, revealing a novel mechanism for dimerization to regulate enzyme activity.  相似文献   

9.
The mature human immunodeficiency virus type 1 protease rapidly folds into an enzymatically active stable dimer, exhibiting an intricate interplay between structure formation and dimerization. We now show by NMR and sedimentation equilibrium studies that a mutant protease containing the R87K substitution (PR(R87K)) within the highly conserved Gly(86)-Arg(87)-Asn(88) sequence forms a monomer with a fold similar to a single subunit of the dimer. However, binding of the inhibitor DMP323 to PR(R87K) produces a stable dimer complex. Based on the crystal structure and our NMR results, we postulate that loss of specific interactions involving the side chain of Arg(87) destabilizes PR(R87K) by perturbing the inner C-terminal beta-sheet (residues 96-99 from each monomer), a region that is sandwiched between the two beta-strands formed by the N-terminal residues (residues 1-4) in the mature protease. We systematically examined the folding, dimerization, and catalytic activities of mutant proteases comprising deletions of either one of the terminal regions (residues 1-4 or 96-99) or both. Although both N- and C-terminal beta-strands were found to contribute to dimer stability, our results indicate that the inner C-terminal strands are absolutely essential for dimer formation. Knowledge of the monomer fold and regions critical for dimerization may aid in the rational design of novel inhibitors of the protease to overcome the problem of drug resistance.  相似文献   

10.
All retroviral proteases belong to the family of aspartic proteases. They are active as homodimers, each unit contributing one catalytic aspartate to the active site dyad. An important feature of all aspartic proteases is a conserved complex scaffold of hydrogen bonds supporting the active site, called the "fireman's grip," which involves the hydroxyl groups of two threonine (serine) residues in the active site Asp-Thr(Ser)-Gly triplets. It was shown previously that the fireman's grip is indispensable for the dimer stability of HIV protease. The retroviral proteases harboring Ser in their active site triplet are less active and, under natural conditions, are expressed in higher enzyme/substrate ratio than those having Asp-Thr-Gly triplet. To analyze whether this observation can be attributed to the different influence of Thr or Ser on dimerization, we prepared two pairs of the wild-type and mutant proteases from HIV and myeloblastosis-associated virus harboring either Ser or Thr in their Asp-Thr(Ser)-Gly triplet. The equilibrium dimerization constants differed by an order of magnitude within the relevant pairs. The proteases with Thr in their active site triplets were found to be approximately 10 times more thermodynamically stable. The dimer association contributes to this difference more than does the dissociation. We propose that the fireman's grip might be important in the initial phases of dimer formation to help properly orientate the two subunits of a retroviral protease. The methyl group of threonine might contribute significantly to fixing such an intermediate conformation.  相似文献   

11.
We present the first solution structure of the HIV-1 protease monomer spanning the region Phe1-Ala95 (PR1-95). Except for the terminal regions (residues 1-10 and 91-95) that are disordered, the tertiary fold of the remainder of the protease is essentially identical to that of the individual subunit of the dimer. In the monomer, the side chains of buried residues stabilizing the active site interface in the dimer, such as Asp25, Asp29, and Arg87, are now exposed to solvent. The flap dynamics in the monomer are similar to that of the free protease dimer. We also show that the protease domain of an optimized precursor flanked by 56 amino acids of the N-terminal transframe region is predominantly monomeric, exhibiting a tertiary fold that is quite similar to that of PR1-95 structure. This explains the very low catalytic activity observed for the protease prior to its maturation at its N terminus as compared with the mature protease, which is an active stable dimer under identical conditions. Adding as few as 2 amino acids to the N terminus of the mature protease significantly increases its dissociation into monomers. Knowledge of the protease monomer structure and critical features of its dimerization may aid in the screening and design of compounds that target the protease prior to its maturation from the Gag-Pol precursor.  相似文献   

12.
A three-dimensional structure of histo-aspartic protease (HAP), a pepsin-like enzyme from the causative agent of malaria Plasmodium falciparum, is suggested on the basis of homologous modeling followed by equilibration by the method of molecular dynamics. The presence of a His residue in the catalytic site instead of an Asp residue, which is characteristic of pepsin-like enzymes, and replacement of some other conserved residues in the active site make it possible for the enzyme to function by the covalent mechanism inherent in serine proteases. The detailed structures of HAP complexes with pepstatin, a noncovalent inhibitor of aspartic proteases, and phenylmethylsulfonyl fluoride, a covalent inhibitor of serine proteases, as well as with a pentapeptide substrate are discussed.  相似文献   

13.
Human immunodeficiency virus protease activity can be regulated by reversible oxidation of a sulfur-containing amino acid at the dimer interface. We show here that oxidation of this amino acid in human immunodeficiency virus type 1 protease prevents dimer formation. Moreover, we show that human T-cell leukemia virus type 1 protease can be similarly regulated through reversible glutathionylation of its two conserved cysteine residues. Based on the known three-dimensional structures and multiple sequence alignments of retroviral proteases, it is predicted that the majority of retroviral proteases have sulfur-containing amino acids at the dimer interface. The regulation of protease activity by the modification of a sulfur-containing amino acid at the dimer interface may be a conserved mechanism among the majority of retroviruses.  相似文献   

14.
IS200 transposases, present in many bacteria and Archaea, appear to be distinct from other groups of transposases. To provide a structural basis for understanding the action of IS200 transposases, we have determined the crystal structure of the SSO1474 protein from Sulfolobus solfataricus, a member of the IS200 family, in both Mn(2+)-bound and Mn(2+)-free forms. Its monomer fold is distinct from other classes of structurally characterized transposases. Two monomers form a tight dimer by exchanging the C-terminal alpha-helix and by merging the two central beta-sheets into a large beta-sheet. Glu(55), His(62), and four water molecules provide the direct coordination sphere of the catalytically essential metal ion in the Mn(2+)-bound structure. His(16), Asp(59), and His(60) also play important roles in maintaining the metal binding site. The catalytic site is formed at the interface between monomers. The candidate nucleophile in the transposition mechanism, strictly conserved Tyr(121) coming from the other monomer, is turned away from the active site, suggesting that a conformational change is likely to occur during the catalytic cycle.  相似文献   

15.
HIV-1 protease (PR) is a major drug target in combating AIDS, as it plays a key role in maturation and replication of the virus. Six FDA-approved drugs are currently in clinical use, all designed to inhibit enzyme activity by blocking the active site, which exists only in the dimer. An alternative inhibition mode would be required to overcome the emergence of drug-resistance through the accumulation of mutations. This might involve inhibiting the formation of the dimer itself. Here, the folding of HIV-1 PR dimer is studied with several simulation models appropriate for folding mechanism studies. Simulations with an off-lattice Gō-model, which corresponds to a perfectly funneled energy landscape, indicate that the enzyme is formed by association of structured monomers. All-atom molecular dynamics simulations strongly support the stability of an isolated monomer. The conjunction of results from a model that focuses on the protein topology and a detailed all-atom force-field model suggests, in contradiction to some reported equilibrium denaturation experiments, that monomer folding and dimerization are decoupled. The simulation result is, however, in agreement with the recent NMR detection of folded monomers of HIV-1 PR mutants with a destabilized interface. Accordingly, the design of dimerization inhibitors should not focus only on the flexible N and C termini that constitute most of the dimer interface, but also on other structured regions of the monomer. In particular, the relatively high phi values for residues 23-35 and 79-87 in both the folding and binding transition states, together with their proximity to the interface, highlight them as good targets for inhibitor design.  相似文献   

16.
A three-dimensional structure of histo-aspartic protease (HAP), a pepsin-like enzyme from the causative agent of malaria Plasmodium falciparum, is suggested on the basis of homologous modeling followed by equilibration by the method of molecular dynamics. The presence of a His residue in the catalytic site instead of an Asp residue, which is characteristic of pepsin-like enzymes, and replacement of some other conserved residues in the active site make it possible for the enzyme to function by the covalent mechanism inherent in serine proteases. The detailed structures of HAP complexes with pepstatin, a noncovalent inhibitor of aspartic proteases, and phenylmethylsulfonyl fluoride, a covalent inhibitor of serine proteases, as well as with a pentapeptide substrate are discussed.  相似文献   

17.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

18.
Alkaline phosphatases (APs) are non-specific phosphohydrolases that are widely used in molecular biology and diagnostics. We describe the structure of the cold active alkaline phosphatase from the Antarctic bacterium TAB5 (TAP). The fold and the active site geometry are conserved with the other AP structures, where the monomer has a large central beta-sheet enclosed by alpha-helices. The dimer interface of TAP is relatively small, and only a single loop from each monomer replaces the typical crown domain. The structure also has typical cold-adapted features; lack of disulfide bridges, low number of salt-bridges, and a loose dimer interface that completely lacks charged interactions. The dimer interface is more hydrophobic than that of the Escherichia coli AP and the interactions have tendency to pair with backbone atoms, which we propose to result from the cold adaptation of TAP. The structure contains two additional magnesium ions outside of the active site, which we believe to be involved in substrate binding as well as contributing to the local stability. The M4 site stabilises an interaction that anchors the substrate-coordinating R148. The M5 metal-binding site is in a region that stabilises metal coordination in the active site. In other APs the M5 binding area is supported by extensive salt-bridge stabilisation, as well as positively charged patches around the active site. We propose that these charges, and the TAP M5 binding, influence the release of the product phosphate and thus might influence the rate-determining step of the enzyme.  相似文献   

19.
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.  相似文献   

20.
DPP-IV is a prolyl dipeptidase, cleaving the peptide bond after the penultimate proline residue. It is an important drug target for the treatment of type II diabetes. DPP-IV is active as a dimer, and monomeric DPP-IV has been speculated to be inactive. In this study, we have identified the C-terminal loop of DPP-IV, highly conserved among prolyl dipeptidases, as essential for dimer formation and optimal catalysis. The conserved residue His750 on the loop contributes significantly for dimer stability. We have determined the quaternary structures of the wild type, H750A, and H750E mutant enzymes by several independent methods including chemical cross-linking, gel electrophoresis, size exclusion chromatography, and analytical ultracentrifugation. Wild-type DPP-IV exists as dimers both in the intact cell and in vitro after purification from human semen or insect cells. The H750A mutation results in a mixture of DPP-IV dimer and monomer. H750A dimer has the same kinetic constants as those of the wild type, whereas the H750A monomer has a 60-fold decrease in kcat. Replacement of His750 with a negatively charged Glu (H750E) results in nearly exclusive monomers with a 300-fold decrease in catalytic activity. Interestingly, there is no dynamic equilibrium between the dimer and the monomer for all forms of DPP-IVs studied here. This is the first study of the function of the C-terminal loop as well as monomeric mutant DPP-IVs with respect to their enzymatic activities. The study has important implications for the discovery of drugs targeted to the dimer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号