首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   

2.
The mechanism by which hepcidin controls cellular iron release protein ferroportin 1 (Fpn1) in macrophages has been well established. However, little is known about the effects of hepcidin on cellular iron uptake proteins. Here, we demonstrated for the first time that hepcidin can significantly inhibit the expression of transferrin receptor 1 (TfR1) and divalent metal transporter 1 in addition to Fpn1, and therefore reduce transferrin-bound iron and non-transferrin-bound iron uptake and also iron release in J774 macrophages. Analysis of mechanisms using the iron-depleted cells showed that hepcidin has a direct inhibitory effect on all iron transport proteins we examined. Further studies demonstrated that the down-regulation of TfR1 induced by hepcidin is associated with cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA), probably being mediated by the cAMP–PKA pathway in J774 macrophages.  相似文献   

3.
To secure iron from transferrin, hepatocytes use two pathways, one dependent on transferrin receptor (TfR 1) and the other, of greater capacity but lower affinity, independent of TfR 1. To clarify further similarities and differences of the two pathways, we have suppressed TfR 1 by 75-80% in human hepatoma-derived HuH-7 cells co-transfected with vectors bearing full-length TfR 1 cDNA or its first 100 bases in antisense orientation. Suppression of TfR 1 does not lead to down regulation of TfR 2, a recently described second transferrin receptor of as yet uncertain function. Both pathways depend on acidification of the compartments in which iron release from transferrin takes place. Recycling of transferrin is a feature of both pathways, but is substantially more efficient in the receptor-dependent route. Degradation of transferrin occurs only in the receptor-independent route, in the first example of a specific catabolic pathway of transferrin. Linkage of cellular iron uptake to release of the synergistic anion (without which iron is not bound by transferrin) is particularly evident in the receptor-independent pathway. Although the relative importance of the two pathways in normal and deranged hepatic iron metabolism remains to be determined, the receptor-independent route is a substantial accessory for iron uptake to the better-known receptor-dependent track.  相似文献   

4.
5.
6.
The human transferrin receptor (TfR) is shed by an integral metalloprotease releasing a soluble form (sTfR) into serum. The sTfR reflects the iron demand of the body and is postulated as a regulator of iron homeostasis via binding to the hereditary hemochromatosis protein HFE. To study the role of transferrin in this process, we investigated TfR shedding in HL60 cells and TfR-deficient Chinese hamster ovary cells transfected with human TfR. Independent of TfR expression, sTfR release decreases with increasing ferritransferrin concentrations, whereas apo-transferrin exhibits no inhibitory effect. To investigate the underlying mechanism, we generated several TfR mutants with different binding affinities for transferrin. Shedding of TfR mutants in transfected cells correlates exactly with their binding affinity, implying that the effect of ferritransferrin on TfR shedding is mediated by a direct molecular interaction. Analysis of sTfR release from purified microsomal membranes revealed that the regulation is independent from intracellular trafficking or cellular signaling events. Our results clearly demonstrated that sTfR does not only reflect the iron demand of the cells but also the iron availability in the bloodstream, mirrored by iron saturation of transferrin, corroborating the important potential function of sTfR as a regulator of iron homeostasis.  相似文献   

7.
Mutations in the HFE gene and a newly identified second transferrin receptor gene, TfR2, cause hemochromatosis. The cognate proteins, HFE and TfR2, are therefore of key importance in human iron homeostasis. HFE is expressed in small intestinal crypt cells where transferrin-iron entry may determine subsequent iron absorption by mature enterocytes, but the physiological function of TfR2 is unknown. Using specific peptide antisera, we examined the duodenal localization of HFE and TfR2 in humans and mice, with and without HFE deficiency, by confocal microscopy. We also investigated potential interactions of these proteins in human intestinal cells in situ. Duodenal expression of HFE and TfR2 (but not TfR1) in wild-type mice and humans was restricted to crypt cells, in which they co-localized. HFE deficiency disrupted this interaction, altering the cellular distribution of TfR2 in human crypts. In human Caco-2 cells, HFE and TfR2 co-localized to a distinct CD63-negative vesicular compartment showing marked signal enhancement on exposure to iron-saturated transferrin ligand, indicating that HFE preferentially interacts with TfR2 in a specialized early endosomal transport pathway for transferrin-iron. This interaction occurs specifically in small intestinal crypt cells that differentiate to become iron-absorbing enterocytes. Our immunohistochemical findings provide evidence for a novel mechanism for the regulation of iron balance in mammals.  相似文献   

8.
9.
The posttranslational regulation of transferrin receptor (TfR1) is largely unknown. We investigated whether iron availability affects TfR1 endocytic cycle and protein stability in HepG2 hepatoma cells exposed to ferric ammonium citrate (FAC). NH4Cl and bafilomycin A1, but not the proteasomal inhibitor MG132, prevented the FAC-mediated decrease in TfR1 protein levels, thus indicating lysosomal involvement. Knockdown experiments showed that TfR1 lysosomal degradation is independent of 1) endocytosis mediated by the clathrin adaptor AP2; 2) Tf, which was suggested to facilitate TfR1 internalization; 3) H-ferritin; and 4) MARCH8, previously implicated in TfR1 degradation. Notably, FAC decreased the number of TfR1 molecules at the cell surface and increased the Tf endocytic rate. Colocalization experiments confirmed that, upon FAC treatment, TfR1 was endocytosed in an AP2- and Tf-independent pathway and trafficked to the lysosome for degradation. This unconventional endocytic regulatory mechanism aimed at reducing surface TfR1 may represent an additional posttranslational control to prevent iron overload. Our results show that iron is a key regulator of the trafficking of TfR1, which has been widely used to study endocytosis, often not considering its function in iron homeostasis.  相似文献   

10.
In most cells, transferrin receptor (TfR1)-mediated endocytosis is a major pathway for cellular iron uptake. We recently cloned the human transferrin receptor 2 (TfR2) gene, which encodes a second receptor for transferrin (Kawabata, H., Yang, R., Hirama, T., Vuong, P. T., Kawano, S., Gombart, A. F., and Koeffler, H. P. (1999) J. Biol. Chem. 274, 20826-20832). In the present study, the regulation of TfR2 expression and function was investigated. A select Chinese hamster ovary (CHO)-TRVb cell line that does not express either TfR1 or TfR2 was stably transfected with either TfR1 or TfR2-alpha cDNA. TfR2-alpha-expressing cells had considerably lower affinity for holotransferrin when compared with TfR1-expressing CHO cells. Interestingly, in contrast to TfR1, expression of TfR2 mRNA in K562 cells was not up-regulated by desferrioxamine (DFO), a cell membrane-permeable iron chelator. In MG63 cells, expression of TfR2 mRNA was regulated in the cell cycle with the highest expression in late G(1) phase and no expression in G(0)/G(1). DFO reduced cell proliferation and DNA synthesis of CHO-TRVb control cells, whereas it had little effect on TfR2-alpha-expressing CHO cells when measured by clonogenic and cell cycle analysis. In addition, CHO cells that express TfR2-alpha developed into tumors in nude mice whereas CHO control cells did not. In conclusion, TfR2 expression may be regulated by the cell cycle rather than cellular iron status and may support cell growth both in vitro and in vivo.  相似文献   

11.
Transferrin receptor 2 (TfR2), a homologue of transferrin receptor 1 (TfR1), is a key molecule involved in the regulation of iron homeostasis. Mutations in TfR2 result in iron overload with similar features to HFE-associated hereditary hemochromatosis. The precise role of TfR2 in iron metabolism and the functional consequences of disease-causing mutations have not been fully determined. We have expressed wild-type and various mutant forms of TfR2 that are associated with human disease in a mouse liver cell line. Intracellular and surface analysis shows that all the TfR2 mutations analyzed cause the intracellular retention of the protein in the endoplasmic reticulum, whereas the wild-type protein is expressed in endocytic structures and at the cell surface. Our results indicate that the majority of mutations that cause type 3 hereditary hemochromatosis are a consequence of the defective localization of the protein.  相似文献   

12.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characterized. Previously, we showed that Fe(2)Tf increases TfR2 stability, suggesting that trafficking of TfR2 may be regulated by interaction with its ligand. In the present study, therefore, we sought to identify the mode of TfR2 degradation, to characterize TfR2 trafficking, and to determine how Fe(2)Tf stabilizes TfR2. Stabilization of TfR2 by bafilomycin implies that TfR2 traffics to the lysosome for degradation. Confocal microscopy reveals that treatment of cells with Fe(2)Tf increases the fraction of TfR2 localizing to recycling endosomes and decreases the fraction of TfR2 localizing to late endosomes. Mutational analysis of TfR2 shows that the mutation G679A, which blocks TfR2 binding to Fe(2)Tf, increases the rate of receptor turnover and prevents stabilization by Fe(2)Tf, indicating a direct role of Fe(2)Tf in TfR2 stabilization. The mutation Y23A in the cytoplasmic domain of TfR2 inhibits its internalization and degradation, implicating YQRV as an endocytic motif.  相似文献   

13.
14.
The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.  相似文献   

15.
16.
转铁蛋白受体2及其功能与相关疾病   总被引:4,自引:1,他引:3  
转铁蛋白受体2(transferrin receptor 2, TfR2) 是最近发现的一种重要铁代谢蛋白.研究显示它不仅是一种介导肝脏细胞铁摄取的主要蛋白,而且在调节小肠铁吸收方面起着极其关键的作用,是控制肝脏铁调素合成和释放的关键成分.已经证实,TfR2基因突变是遗传性血色素沉着病的重要原因之一.  相似文献   

17.
Cellular iron uptake and storage are coordinately controlled by binding of iron-regulatory proteins (IRP), IRP1 and IRP2, to iron-responsive elements (IREs) within the mRNAs encoding transferrin receptor (TfR) and ferritin. Under conditions of iron starvation, both IRP1 and IRP2 bind with high affinity to cognate IREs, thus stabilizing TfR and inhibiting translation of ferritin mRNAs. The IRE/IRP regulatory system receives additional input by oxidative stress in the form of H(2)O(2) that leads to rapid activation of IRP1. Here we show that treating murine B6 fibroblasts with a pulse of 100 microm H(2)O(2) for 1 h is sufficient to alter critical parameters of iron homeostasis in a time-dependent manner. First, this stimulus inhibits ferritin synthesis for at least 8 h, leading to a significant (50%) reduction of cellular ferritin content. Second, treatment with H(2)O(2) induces a approximately 4-fold increase in TfR mRNA levels within 2-6 h, and subsequent accumulation of newly synthesized protein after 4 h. This is associated with a profound increase in the cell surface expression of TfR, enhanced binding to fluorescein-tagged transferrin, and stimulation of transferrin-mediated iron uptake into cells. Under these conditions, no significant alterations are observed in the levels of mitochondrial aconitase and the Divalent Metal Transporter DMT1, although both are encoded by two as yet lesser characterized IRE-containing mRNAs. Finally, H(2)O(2)-treated cells display an increased capacity to sequester (59)Fe in ferritin, despite a reduction in the ferritin pool, which results in a rearrangement of (59)Fe intracellular distribution. Our data suggest that H(2)O(2) regulates cellular iron acquisition and intracellular iron distribution by both IRP1-dependent and -independent mechanisms.  相似文献   

18.
19.
Transferrin receptor 2 (TfR2) is a homolog of transferrin receptor 1 (TfR1), the receptor responsible for the uptake of iron-loaded transferrin (holo-Tf) into cells. Unlike the ubiquitous TfR1, TfR2 is predominantly expressed in the liver. Mutations in TfR2 gene cause a rare autosomal recessive form of the iron overload disease, hereditary hemochromatosis. Previous studies demonstrated that holo-Tf increases TfR2 levels by stabilizing TfR2 at the protein level. In this study we constructed two chimeras, one of which had the cytoplasmic domain of TfR2 and the remaining portion of TfR1 and the other with the cytoplasmic and transmembrane domain of TfR1 joined to the ectodomain of TfR2. Similar to TfR2, the levels of the chimera containing only the cytoplasmic domain of TfR2 increased in a time- and dose-dependent manner after the addition of holo-Tf to the medium. The half-life of the chimera increased 2.7-fold in cells exposed to holo-Tf like the endogenous TfR2 in HepG2 cells. Like TfR2 and unlike TfR1, the levels of the chimera did not respond to intracellular iron content. These results suggest that although holo-Tf binding to the ectodomain is necessary, the cytoplasmic domain of TfR2 is largely responsible for its stabilization by holo-Tf.  相似文献   

20.
Iron regulates the stability of the mRNA encoding the transferrin receptor (TfR). When iron is scarce, iron regulatory proteins (IRPs) stabilize TfR mRNA by binding to the 3'-untranslated region. High levels of iron induce degradation of TfR mRNA; the translation inhibitor cycloheximide prevents this. To distinguish between cotranslational mRNA decay and a trans effect of translation inhibitors, we designed a reporter system exploiting the properties of the selectable marker gene thymidine kinase (TK). The 3'-untranslated region of human transferrin receptor, which contains all elements necessary for iron-dependent regulation of mRNA stability, was fused to the TK cDNA. In stably transfected mouse fibroblasts, the expression of the reporter gene was perfectly regulated by iron. Introduction of stop codons in the TK coding sequence or insertion of stable stem-loop structures in the leader sequence did not affect on the iron-dependent regulation of the reporter mRNA. This implies that global translation inhibitors stabilize TfR mRNA in trans. Cycloheximide prevented the destabilization of TfR mRNA only in the presence of active IRPs. Inhibition of IRP inactivation by cycloheximide or by the specific proteasome inhibitor MG132 correlated with the stabilization of TfR mRNA. These observations suggest that inhibition of translation by cycloheximide interferes with the rate-limiting step of iron-induced TfR mRNA decay in a trans-acting mechanism by blocking IRP inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号